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ABSTRACT
In this paper, we numerically investigate the effects of time-varying bending stiffness on the propulsion performance of a flapping foil using
a fully coupled fluid-structure interaction model. The flow field is simulated using a Navier–Stokes solver while the structural dynamics is
resolved by a nonlinear beam model. The force generation, the passive deformation, and the flow field of the flexible foil are significantly
affected by the time dependency of flexibility. Here, both the actuation at the leading edge and the stiffness of the foil vary sinusoidally, and
the phase ϕ between them plays an important role in determining the performance of the foil. At ϕ = 0○, the maximum time-averaged thrust
coefficient can be increased by ∼52% whereas the highest propulsion efficiency remains almost the same as that of the foil with a constant
flexibility. This is of significance when the size of the wing is often constrained. In addition, the foil with time-varying stiffness generates
considerable lift force, which is attributed to the non-symmetrical deformations and deflected vortex-shedding patterns. Finally, the force
generation due to added mass is discussed using a simplified model.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0027927., s

I. INTRODUCTION

The dynamics of flapping foils are fascinating and have practi-
cal applications in the design of micro-aerial vehicles (MAVs) at low
Reynolds numbers.1 In the past few decades, numerous studies have
contributed to this appealing research field.2,3 Many previous stud-
ies have concentrated on rigid foils undergoing heave and/or pitch
motions.4–11 For purely plunging foils, it has been revealed that with
the increase in flapping frequency, the wake behind the foil transfers
from drag-indicative to thrust-indicative, and the motion of the foil
creates an effective angle of attack, which causes the resultant force
to lean forward, thereby producing thrust.12,13 As the frequency fur-
ther increases, the symmetry of the vortex shedding breaks, and
a deflected wake is created, which results in the generation of lift
force.14 The Strouhal number (St) is usually considered an important
parameter for the dynamics of flapping foils. Indeed, some previous
studies revealed that flapping foils achieved the best performance in
the range of 0.25 < St < 0.4, which is consistent with that of birds,
insects, and marine animals in nature.15 However, it is also reported
that the Strouhal number alone is not sufficient to characterize

the propulsion performance of flapping foils.16 The wake structures
and force generation also strongly depend on the reduced frequency
and the normalized amplitude.17

The effects of structural flexibility on the propulsion efficiency
of flapping foils have also been widely investigated in many previ-
ous papers.18–20 The inclusion of material stiffness introduces two
important parameters, namely, normalized bending stiffness (K)
and mass ratio (m̃). Heathcote and Gursul21 experimentally inves-
tigated the propulsion performance of a heaving foil with chordwise
flexibility. They found that the thrust coefficient and the propulsion
efficiency were functions of the Strouhal number and the phase angle
between the imposed heave and the induced pitch motions. Both
thrust and efficiency were greatly enhanced if an appropriate degree
of flexibility was used. It was also revealed that higher thrust forces
were associated with stronger trailing-edge vortices whereas higher
efficiencies corresponded to relatively weaker leading-edge vortices.
Shoele and Zhu22 numerically examined a skeleton-reinforced flap-
ping wing with non-uniformly distributed stiffness. It was found that
a strengthened leading edge could significantly augment the lift force
while retaining the energy consumption. The effect of non-uniform
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stiffness distribution was also experimentally studied by Kanchar-
ala and Philen.23 The chordwise-varying stiffness improved both the
thrust and propulsion efficiency, which was attributed to the larger
bending curvature and trailing edge amplitude.

The material flexibility also raises the possibility of resonance
between the actuating motion and the natural frequency of the struc-
ture.24–26 Kang et al.27 numerically studied three flexible wings with
chordwise, spanwise, and isotropic flexibility, respectively. They
established a correlation between the thrust force and a newly
defined maximum relative wing-tip deformation parameter and also
stressed that the maximum thrust force was obtained when the
wing moved near the resonance frequency while the optimal effi-
ciency was achieved at approximately half of the wing’s natural fre-
quency. By experimentally examining the dynamics of flexible pitch-
ing panels with various flexibilities, Dewey et al.28 pointed out that
resonance alone was insufficient to produce maximum propulsive
efficiency and the optimal Strouhal number range should be simul-
taneously satisfied. Nevertheless, Ramananarivo et al.29 argued that
flapping wings created the best performance by coordinating the
kinematics and the deformation rather than seeking a specific struc-
tural resonance condition of the wing. Indeed, certain insects in
nature are observed to flap their wings at only a fraction of the res-
onance frequency.30,31 The mechanisms behind the resonance may
need further investigation.

For flexible foils, the mass ratio also plays an important role in
determining the performance of force generation. The passive struc-
tural conformations can be divided into two categories based on the
mass ratio of the foil, namely, fluid-driven and inertia-driven defor-
mations.32 Zhu33 numerically examined the dynamics of a flexible
foil in both regimes and concluded that the fluid-induced deforma-
tion increases both thrust and propulsion efficiency in a wide range
of structural flexibility while the inertia-induced deformation gen-
erally deteriorates the performance of the foil. Similar conclusions
were also drawn by Olivier and Dumas.34

Despite extensive studies on the dynamics of flexible flapping
foils, the bending stiffness of the foil, including both uniform and
non-uniform distributions, has been considered a time invariant.
With the advent of new smart materials, Young’s modulus of such
materials can be controlled by the current intensity.35 These new
materials have potential applications in the design of MAVs, which
can extend the possible degrees-of-freedom in control. Unfortu-
nately, little attention has been paid to the investigation of relevant
topics. Here, we examine the possibility of performance enhance-
ment via time-varying material properties. Specifically, we numer-
ically investigate the dynamics of a two-dimensional flapping foil
with time-varying bending stiffness. The objective is to investigate
how a time-varying bending stiffness possibly affects the dynam-
ics and propulsion performance of a flapping foil. The novelty of
the current work is that the foil’s flexibility is no longer a time-
invariant and a better understanding of its effect may contribute
to future novel mechanical designs and control strategies of MAVs.
To the best knowledge of the authors, the present study would be
the first numerical investigation attempting to address the effect
of time-dependent bending stiffness on the dynamics of a flexible
foil.

The rest of this paper is organized as follows: in Sec. II,
the structure and kinematics of the foil are described, and the
parameters characterizing the performance are defined. In Sec. III,

the governing equations and numerical methods used in the present
fluid-structure interaction (FSI) solver are introduced in brief. In
Sec. IV, the numerical results, including the deformation, the force
generation, and the near-body flow field are presented. The conclu-
sions are drawn in Sec. V.

II. PROBLEM STATEMENT
In the present study, we numerically examine the propul-

sion performance of a two-dimensional flapping foil in a uniform
flow, as depicted in Fig. 1. The foil has a length L and thickness
h (=0.01L). Structurally, the foil is modeled as a nonlinear Euler–
Bernoulli beam. The dimensionless bending stiffness of the foil is
defined as K ≡ EI/ρU2

∞L3, where E is Young’s modulus, I is the sec-
ond moment of inertia, ρ is the flow density, and U∞ is the incoming
flow velocity. The mass ratio is defined as m̃ ≡ ρsh/ρL, where ρs is the
structural density. Here, the mass ratio is chosen to be m̃ = 0.2.

Kinematically, the leading edge of the foil undergoes a heave
motion in the y-direction, which can be described as

yLE(t) = a0 cos(2πft), (1)

where a0 is the heave amplitude and is chosen to be a0 = 0.5L, f is
the motion frequency, and t is the time. The Strouhal number in the
present study is defined based on the foil length as Stc = fL/U∞. Pre-
vious biomimetic studies have revealed that the Strouhal numbers of
many fish, birds, and insects range from 0.25 to 0.4 and some species
are cruising at higher Strouhal numbers up to 0.7.36 Therefore, in
the current work, Stc is selected to be 0.5. Different from previous
studies on flapping foils, Young’s modulus of the foil in the present
work is a time-dependent variable, which is defined as

E(t) = E0 × 10β cos(2πft+ϕ), (2)

where β is a control parameter and ϕ is the phase between the heave
motion and the time-varying Young’s modulus. Here, β is fixed at
unity. It should be noted that Eq. (2) is defined solely to set a design
objective, which is not the stiffness variation of the currently avail-
able material. However, it should be noted that with the advance of
materials science, there are some available materials whose flexibility
can be changed by voltage (e.g., conductive propylene-based elas-
tomers35) or temperature (e.g., low-melting-point-alloys37). Since
the variation profiles of temperature or voltage can be arbitrarily
designed (especially the voltage), we believe that it is very possible
to achieve a stiffness profile satisfying Eq. (2).

FIG. 1. Sketch of the flapping foil with time-varying bending stiffness.
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The propulsion performance of the foil is featured by the
mean thrust coefficient CT , the mean lift coefficient CL, the mean
power expenditure coefficient CP, and the propulsion efficiency η.
These mean values are evaluated by averaging the instantaneous
coefficients over one motion period T. The instantaneous thrust
coefficient is defined as

CT(t) =
−FX(t)

0.5ρU2∞L2 , (3)

where FX(t) is the x-component of the instantaneous hydrodynamic
force F(t).

Similarly, we have

CL(t) =
FY(t)

0.5ρU2∞L2 ,

CP(t) =
P(t)

0.5ρU3∞L2 ,
(4)

where FY (t) are the components of the instantaneous hydrodynamic
force F(t) in the y direction and P(t) is the instantaneous power
expenditure, which is evaluated as

P(t) = ∬
S
−F(x, t) ⋅Vg(x, t)dx, (5)

whereVg(x, t) is the local moving velocity of the foil. The negativeCP
value corresponds to the scenario that energy is transferred from the
flow to the foil. However, there is no guarantee that this energy can
be stored as elastic energy in the structure and released later. There-
fore, we assume that the energy transferred from the fluid to the foil
cannot be reused in order to avoid over-estimating the efficiency;
thus, the negative values of CP(t) are set to be zero.22,32 Therefore,
the propulsion efficiency η is calculated as

η =
−FXU∞

P
=
CT

CP
. (6)

III. MATHEMATICAL FORMULATION AND NUMERICAL
METHODS

Two main parts are included in the present fluid-structure
interaction solver, namely, a flow solver and a structural solver.
In the fluid part, the unsteady compressible Navier–Stokes equa-
tions are solved using a finite volume method. The flow governing
equations can be expressed in its integral form as follows:

∂

∂t∭V
QdV +∬

∂V
GcdS −∬

∂V
GvdS = 0, (7)

where Q = (ρ, ρv, ρE)T is the conservative variable vector, where ρ
is the fluid density, v is the velocity vector, and E is the total energy,
V is the control volume, ∂V is the boundary surface enclosing the
volume, S is the surface vector in the outward direction, and Gc and
Gv are the convective and diffusive flux vectors, respectively.

The fluid governing equation is discretized by a cell-centred
finite volume method based on an overset, multi-block structured
grid system.38,39 With a structured grid method, the fluid domain is
divided into an array of hexahedral cells. Each grid cell is uniquely
denoted by three indices i, j, k. For each hexahedral cell (i, j, k), the

conservation laws are applied, and the following semi-discrete form
can be derived:

∂

∂t
(Qi,j,kΔVi,j,k) − Fi,j,k = Ai,j,k, (8)

where Fi ,j ,k is the total convective and diffusive fluxes going through
the surface of the hexahedral cell and Ai ,j ,k denotes the artificial
dissipation, which is used for numerical stability.40

For unsteady flows, the dual-time stepping algorithm41 is
employed for the temporal integration, where Eq. (8) is reformulated
as a steady-state problem with a pseudo-time t̃,

∂

∂ t̃
Qn+1

=
1

ΔVn+1 F̃(Q
n+1
), (9)

where

F̃(Qn+1
) = F(Qn+1

) + A(Qn+1
)

−
3(QΔV)n+1

− 4(QΔV)n + (QΔV)n−1

2Δt
. (10)

Equation (9) is then integrated using a hybrid multistage Runge–
Kutta scheme. At each time step, the domain connectivity needs to
be established for interpolation if the overset grid method is used
for flow simulation. In the present paper, this is achieved using an
implicit hole cutting method.39 It should be noted that the present
flow solver is developed for three-dimensional problems. For the
two-dimensional problem considered here, two layers of mesh ver-
tices are used to form three-dimensional control volumes, and the
two planes in the spanwise direction are considered as symmetric
planes.

Structurally, the dynamics of the nonlinear Euler–Bernoulli
beam is governed by42

ρsh
∂2x
∂t2 +

∂2x
∂s2 (

Eh3

12
∂2x
∂s2 ) −

∂

∂s
{Eh[1 − (

∂x
∂s
⋅
∂x
∂s
)

−0.5
]
∂x
∂s
} = Ff ,

(11)
where x is the instantaneous position of the foil and s (0 < s < L) is
the Lagrangian coordinate, ρs and h are the density and thickness of
the foil, respectively, E is Young’s modulus of the foil, and Ff is the
fluid force.

At the basal end (s = 0) of the foil, a boundary condition with
the prescribed motion is applied,

x(0, t) = x(0, yLE(t)),

∂x(0, t)
∂s

= [1, 0]T .
(12)

At the foil tip (s = L), the free boundary condition is employed,

∂x
∂s
(
Eh3

12
∂2x
∂s2 ) − Eh[1 − (

∂x
∂s
⋅
∂x
∂s
)

−0.5
]
∂x
∂s
= 0,

∂2x
∂s2 = 0.

(13)

Equation (11), together with boundary conditions (12) and (13),
is discretized using a second-order finite difference method, and
the resulting linear system is solved with an iterative Gauss–Seidel
method.33,42
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FIG. 2. Coupling procedure of different modules in the present fluid-structure
interaction solver.

In the present fluid-structure interaction solver, the flow model
is coupled with the structural model using a partitioned approach
known as the conventional serial staggered procedure.43 As shown in
Fig. 2, in the present coupling method, the flow solver and the struc-
tural solver exchange data only once within one time step, which are
categorized into explicit schemes. Due to the inconsistency between
the fluid mesh and structural mesh, interpolations of fluid forces and
structural displacements must be performed at the fluid–structure
interface. For the force interpolation, as demonstrated in Fig. 3(a),
both the fluid grid nodes on the surface of the foil and the structural
grid nodes are first projected to a common planar plane, on which
a bilinear (linear for two-dimensional problems) interpolation is
then performed.38 The structural displacements are transferred to
the fluid mesh by a constant volume tetrahedron method.44 As illus-
trated in Fig. 3(b), each node qf on the fluid grid is connected rigidly
to three closest points qs ,i on the solid plane spanning a tetrahe-
dron. During the deforming process, the volume of the tetrahedron
is assumed to be a constant. The out-of-plane distance ∥γd⃗∥ thus

becomes a function of the in-plane stretching of the three connected
solid points. In the local coordinate system spanned by difference
vectors a⃗ and b⃗ and the normal vector d⃗ = a⃗ × b⃗, the position of the
fluid node qf can be described as

qf − qs,1 = αa⃗ + βb⃗ + γd⃗. (14)

After the deformation of the structural grid, the vectors a⃗, b⃗, and,
thus, d⃗ are known. The parameters α and β are chosen to be constant,
i.e., α = α0 and β = β0 (the subscript 0 denotes the initial values). The
parameter γ is defined as

γ =
Ð→
d0 ⋅
Ð→
d0

d⃗ ⋅ d⃗
γ0, (15)

which ensures the volume of the tetrahedron spanned by a⃗, b⃗, and c⃗
to be a constant.44

IV. RESULTS
The problem depicted in Fig. 1 is solved using the fluid-

structure interaction solver described in Sec. III. The computational
domain and corresponding boundary conditions are demonstrated
in Fig. 4(a). A non-reflective far-field boundary condition is applied
at the outer boundaries of the computational domain while a no-
slip boundary condition is used at the surface of the foil. The overset
grids used for flow simulation are shown in Fig. 4(b). The Reynolds
number based on the length of the foil is Re = 1000. In relatively low
Reynolds number regimes (below or in the order of 103), turbulence
may have a subtle effect on the flow dynamics. For these scenarios,
laminar flow models are usually used for biomimetic problems (see
examples in Refs. 45 and 46). Therefore, the flow in the present study
is assumed to be laminar. The current compressible flow solver has
been extensively validated in our previous work,47,48 and the present
FSI solver has also been validated via several benchmarks;38 all the
results showed good agreement with those from the literature.

In the present paper, two different foils are examined. In the
first case (hereafter referred to as foil A), the foil has a constant flexi-
bility, i.e., the bending stiffness does not change with time E(t) = E0.
In the second case (foil B), the bending stiffness of the foil is time-
dependent, i.e., the performance of the foil is not only affected by
E0 but also determined by parameters ϕ in Eq. (2). To have a fair
comparison between foil A and foil B, the flexibility of the foil will

FIG. 3. (a) Projection-based flow force
interpolation, and (b) the constant-
volume tetrahedron method for structural
displacement transfer.
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FIG. 4. (a) Computational domain and (b)
fluid mesh for the proposed problem.

be depicted by the time-averaged normalized bending stiffness K,
which is defined as K = ∫

t+T
t E(t)I/ρU2

∞L3dt.
In addition, a self-consistency study is carried out to justify

the fluid mesh, physical time step, and number of solid nodes
along the foil used here. To check the sensitivity to the fluid mesh,
three meshes with different densities, namely, mesh_F (fine mesh),
mesh_M (medium mesh), and mesh_C (coarse mesh) are generated.
More details about the meshes can be found in Table I. Similarly,
three physical time steps (dt = T/160, T/200, and T/240) and three
numbers of structural grid points along the foil (Np = 81, 101, and
121) are chosen for this sensitivity study. Figures 5(a)–5(c) demon-
strate the sensitivity of the present code to the fluid mesh density,
time step size, and number of solid nodes along the foil, and the
time-averaged values are summarized in Table II. It is seen that with
sufficiently high fluid/structural mesh densities and a sufficiently
small time step, the results are not sensitive to these numerical
parameters. On the basis of the self-consistency study, the simula-
tions in the following paper are based on mesh_M, dt = T/200, and
Np = 101.

A. Force generation and propulsion efficiency
The time-averaged thrust, lift coefficient, and propulsion effi-

ciency as functions of the mean bending stiffness of foils A and
B are shown in Fig. 6. It is observed that for the foil with con-
stant stiffness (foil A), CT and η increase as the flexibility increases
and then decline significantly after reaching a peak. This is con-
sistent with the general conclusion from previous studies on flexi-
ble flapping foils18,21 that the propulsion performance of a flapping
foil can be enhanced by a certain amount of flexibility but will be
undermined if the flexibility is excessive. The force creation of the

TABLE I. Grid cell numbers and first layer thickness for three different meshes.

First-layer
Cluster 1 Cluster 2 Cluster 3 Total thickness (L)

Mesh_C 7 350 8 400 6 300 22 050 0.001
Mesh_M 9 600 11 200 11 200 32 000 0.001
Mesh_F 12 150 13 500 20 350 46 000 0.001

flexible flapping foil is significantly influenced by making the bend-
ing stiffness of the foil a time-dependent variable (foil B). Specif-
ically, the time-averaged thrust coefficients of foil B at ϕ = 0○ are
substantially larger than those of Foil f for higher K values whereas
the CT peaks of foil B at ϕ = 60○ and 90○ are lower than those of foil
A, as shown in Fig. 6(a). The maximum thrust coefficient generated
by foil B at ϕ = 0 is created at higher rigidity and is ∼52% higher than
that of foil A. In addition, foil B produces considerable net lift force
at all ϕ values, as demonstrated in Fig. 6(b), while the time-averaged
lift force of foil A is almost zero. The largest lift force is created by foil
B at ϕ = 90. This actually provides an alternative approach of creat-
ing lift force with symmetric sinusoidal kinematics. As illustrated in
Fig. 6(c), foil B achieves higher propulsion efficiency at ϕ = 0○ than
at other ϕ values. Besides, foil B also produces higher propulsion effi-
ciency than foil A at larger bending stiffness at ϕ = 0○. Despite this,
its peak value still does not surpass that of foil A. However, this is
still of importance in situations where the size of the wing is strictly
restricted.

Figure 7 shows the variations in CT , CL, and η of foil B as func-
tions of phase ϕ at different mean flexibilities. In general, both CT
and η decrease as the phase ϕ increases at first and then start to
increase after reaching the minimum values. In terms of thrust gen-
eration and propulsion efficiency, the best performance is accom-
plished at ϕ = 0○ and 180○. Although the poorest performance is
achieved when ϕ is in the range of 90○–120○, the foil produces the
largest magnitude of lift force in that range.

Figures 8(a) and 8(c) demonstrate the instantaneous thrust
coefficient in one motion period at K = 1.42 and 2.84, respectively. It
is seen that foil A produces two identical CT peaks during the down-
stroke and the upstroke periods.27 Compared with foil A, foil B at
ϕ = 0○ yields a lower thrust peak value during the downstroke but
a significantly higher peak during the upstroke, which leads to a
larger time-averaged thrust force. On the contrary, at ϕ = 90○, foil B
barely creates net thrust during the downstroke, leading to a decrease
in time-averaged thrust. The time history of the lift coefficient is
shown in Figs. 8(b) and 8(d), from which we can observe that foil
A generates the same amount of lift force during the downstroke
and the upstroke but in opposite directions, i.e., the time-averaged
lift force for foil A is almost zero. As plotted in Fig. 6(b), foil B
creates considerable net lift force at both ϕ = 0○ and 90○, which
is attributed to the larger lift force produced during the upstroke.
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FIG. 5. Sensitivity study of the present
code to the (a) CFD mesh density (dt
= T/200 and Np = 101), (b) time step
size (mesh_M and Np = 101), and (c)
number of structural nodes along the
foil (mesh_M and dt = T/200). The plots
show the instantaneous thrust coefficient
of foil B (time-varying stiffness) at Stc

= 0.5, K = 2.84, and ϕ = 0○.

Figure 9 demonstrates the instantaneous thrust and lift coefficients
in long time spans and the corresponding power spectra. It is
observed from Figs. 9(a) and 9(c) that the variations in both thrust
and lift coefficients become periodical after 10 flapping cycles. The
power spectrum of the thrust [Fig. 9(b)] shows one dominant com-
ponent ( f̂ /f = 2, where f̂ is the frequency of the fluid force) and
three other considerable components ( f̂ /f = 1, 3, and 4). Similarly,
the spectrum of the lift force [Fig. 9(d)] also includes multiple con-
siderable frequency components. However, it has two dominant fre-
quencies ( f̂ /f = 1 and 2) and two other considerable components
( f̂ /f = 3 and 4).

B. Foil deformations
Figure 10 demonstrates the deformation patterns and trailing

edge trajectories of foil A and foil B at ϕ = 0○ and 90○. It is seen

TABLE II. Summary of the time-averaged thrust coefficients from various mesh
densities and a number of structural points and time steps.

Np dt/T CT Difference (%)

Mesh_F 101 1/200 1.788 0.00
Mesh_C 101 1/200 1.651 −7.68
Mesh_M 101 1/200 1.770 −1.01
Mesh_M 101 1/160 1.767 −1.19
Mesh_M 101 1/240 1.770 −0.99
Mesh_M 81 1/200 1.743 −2.52
Mesh_M 121 1/200 1.743 −2.50

that for all cases, only the first bending mode is excited. For foil
A, the deformation pattern is symmetrical about the y-axis, and the
trailing edge trajectory has a symmetrical “figure-eight” shape. How-
ever, this symmetry is broken for foil B. Specifically, foil B creates
larger deformation during the upstroke at ϕ = 0○ while it gener-
ates higher conformation during the downstroke at ϕ = 90○. In
addition, the “figure-eight” shapes of the trailing edge trajectory are
distorted.

Figure 11 shows the displacements of the leading edge
(yL/a0) and the trailing edge (yT/a0) and the relative deformation
((yL − yT)/a0) for foil A and foil B at ϕ = 0○ and 90○. For all
cases, the leading edge of the foil moves sinusoidally, as described
in Eq. (1). It is observed that the trailing edge displacement and the
relative deformation of foil A also follow a sinusoidal fashion while
those of foil B vary with time in a non-sinusoidal manner. Specifi-
cally, foil B experiences a surge in relative deformation during the
upstroke at ϕ = 0○ while the largest deformation occurs during the
downstroke when ϕ = 90○.

It can be observed from Fig. 11(a) that the phase lag (θ) between
the leading edge motion and the relative deformation for foil A is
∼90○, which agrees with previous studies on the condition that max-
imizes the thrust force of flexible flapping foils.21,27 However, the
parameter θ is difficult to be defined for foil B as the variations in
the relative deformation are significantly different during the down-
stroke and the upstroke periods. A comparison between Figs. 11(a)
and 8(a) also reveals that foil A creates the largest relative deforma-
tion at the instants (t/T = 0.25 and 0.75) corresponding to the CT
peaks. Nevertheless, the relationship between the deformation and
the force creation becomes more complicated for foil B. At ϕ = 0○,
foil B creates the largest deformation at t/T = 0.75 while the thrust
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FIG. 6. (a) Time-averaged thrust coeffi-
cient CT , (b) the lift coefficient CL, and
(c) the propulsion efficiency η as func-
tions of dimensionless averaged bending
stiffness K for various foils. Stc = 0.5.
Foil A has constant stiffness; foil B has
time-varying stiffness.

FIG. 7. (a) Time-averaged thrust coeffi-
cient CT , (b) the lift coefficient CL, and (c)
the propulsion efficiency η as functions
of phase ϕ for foil B at different mean
flexibilities. Stc = 0.5. Foil A has constant
stiffness; foil B has time-varying stiffness.
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FIG. 8. Time histories of thrust and lift
coefficients for foil A (constant stiffness)
and foil B (time-varying stiffness): (a) and
(b) K = 1.42 and (c) and (d) K = 2.84.
Stc = 0.5.

peak is accomplished at a later time instant, as shown in Fig. 8(a).
In contrast, at ϕ = 90○, the largest relative deformation is gener-
ated at t/T = 0.25 whereas almost no thrust force is created at this
instant.

Figure 12 demonstrates the normalized trailing edge ampli-
tude A∗ = max(∣yT ∣/a0) and the maximum relative deformation
Y∗ = max(∣yL − yT ∣/a0) of foils A and B. Obviously, foil A has
the same tip amplitude and maximum relative deformation during
the downstroke and the upstroke. In general, foil A and foil B share
some similar variation trends, that is, the tip amplitude increases

as the flexibility increases and then declines after reaching a peak,
and the maximum relative deformation increases monotonously as
the bending stiffness decreases. Nevertheless, foil B generates sig-
nificantly different tip amplitudes and maximum relative deforma-
tions at the downstroke and the upstroke. Specifically, the largest tip
amplitudes and relative deformations at the downstroke [Figs. 12(a)
and 12(c)] and the upstroke [Figs. 12(b) and 12(d)] are accomplished
at ϕ = 90○ and ϕ = 0○, respectively. A closer inspection of Fig. 12
demonstrates that the maximum values of tip amplitude and relative
deformation achieved by foil B at ϕ = 90○ and 0○ are similar to each

FIG. 9. Time histories and power spec-
tra of the thrust coefficient [(a) and (b)]
and the lift coefficient [(c) and (d)] for foil
B (time-varying stiffness) at K = 2.84,
Stc = 0.5, and ϕ = 0○. In subplots [(b)
and (d)], the frequency is normalized by
the heave frequency of the leading edge.
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FIG. 10. Deformation patterns and the trailing edge trajectories of the foil: (a), (d), and (g) foil A; (b), (e), and (h) foil B, ϕ = 0○; and (c), (f), and (i) foil B, ϕ = 90○. Stc = 0.5,
β = 1.0, and K = 0.57. Subplots [(d)–(f)] show the same deformations as [(a)–(c)] with the leading edges clamped. Foil A has constant stiffness; foil B has time-varying
stiffness.

other. However, it is interesting to observe that the high amplitudes
and relative deformations created by foil B at ϕ = 90○ do not con-
tribute much to the thrust generation, as demonstrated in Figs. 6(a)
and 8(a). This may be associated with the flow field created by the
foil, which will be discussed later.

C. Near-body flow fields
Figures 13–15 demonstrate the vorticity contours within a

motion period for foil A and foil B at ϕ = 0○ and 90○, respec-
tively. It is observed from Fig. 13 that foil A produces a clockwise
and a counter-clockwise trailing edge vortex (TEV) during upstroke
and downstroke, respectively. These vortices are shed into the wake
alternatively, forming a reversed von Karman vortex street, which
is known as a thrust-productive wake pattern.12 However, the wake
patterns produced by foil B are very different from that of foil A. Foil
B creates a deflected vortex-pair within one motion cycle at ϕ = 0○,
which resembles the deflected wake previously observed from both
rigid and flexible flapping foils at higher motion frequencies.14,21 The
deflected vortex shedding will lead to the generation of finite lift

force, as illustrated in Fig. 6(b), which has also been demonstrated in
previous experiments.3 Interestingly, foil B also generates deflected
vortex-pairs at ϕ = 90○, which are distinct from those at ϕ = 0○.
Specifically, for foil B at ϕ = 0○, the vortex-pair starts to form during
the downstroke (t = T/8 in Fig. 14) while the vortex-pair is formed
at the beginning of the upstroke when ϕ is 0○ (t = 4T/8 in Fig. 15).
Another distinction is that the vortex-pair shed by foil B at ϕ = 0○

has an “up-down” structure whereas a “fore-rear” arrangement is
observed in the wake of foil B at ϕ = 90○.

The pressure contours and distributions of foil A within one
motion period are demonstrated in Fig. 16. The largest pressure dif-
ference between the two sides of the foil is accomplished at t = 2T/8
and 6T/8, which correspond to the time instants when the largest
deformations are achieved, as shown in Fig. 11(a). The simultaneous
creation of the highest pressure difference and relative deformation
leads to the generation of thrust peaks shown in Fig. 8(a).

Figure 17 illustrates the same plots as those in Fig. 16 for
foil B at ϕ = 0○. We can observe that the pressure distributions
generated by foil B are significantly different from those by foil A. At
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FIG. 11. Normalized leading edge dis-
placement (yL/a0), normalized trailing
edge displacement (yT/a0), and normal-
ized relative deformation [(yT − yL)/a0]
as functions of time: (a) foil A; (b) foil B,
ϕ = 0○; and (c) foil B, ϕ = 90○. Stc = 0.5,
β = 1.0, and K = 1.42. Foil A has con-
stant stiffness; foil B has time-varying
stiffness.

FIG. 12. Normalized tip amplitude (A∗)
and maximum relative deformation (Y∗)
as functions of dimensionless aver-
aged bending stiffness for foils A
and B at (a) and (c) the down-
stroke and (b) and (d) the upstroke.
Stc = 0.5 and β = 1.0. Foil A has constant
stiffness; foil B has time-varying stiffness.
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FIG. 13. Instantaneous flow vorticity fields of foil A (constant stiffness) in a motion period. Stc = 0.5 and K = 1.42.

ϕ = 0, foil B creates high pressure difference at the beginning of the
downstroke. However, the large resultant pressure difference only
contributes a minor portion to the creation of thrust force due to
the small deformation [see Fig. 11(b)], leading to a relatively lower
thrust peak during the downstroke, as shown in Fig. 8(a). During the
upstroke, the largest deformation and the highest pressure difference
are achieved at t = 6T/8 and t = 7T/8, respectively. As the thrust force
is determined by both the magnitude of the pressure difference and
the relative deformation orienting it in the thrust direction, the max-
imum thrust force is accomplished at an instant between t = 6T/8
and t = 7T/8 [see Fig. 8(a)], indicating an optimal combination of
the pressure distribution and the deformation of the foil.

As shown in Fig. 18, foil B at ϕ = 90○ generates large defor-
mation [see Fig. 11(c)] but little pressure difference during the
downstroke. On the contrary, high pressure difference is created at
t = 5T/8 and 6T/8 during the upstroke. However, only medium
deformations are generated. Therefore, at ϕ = 90○, foil B creates lit-
tle thrust during the downstroke, and the maximum value achieved
during the upstroke is lower than that at ϕ = 0○, as shown in Fig. 8(a).
The present results highlight the importance of the exact confor-
mation pattern of the foil, which may completely change the flow
field and pressure distribution. This is reminiscent of previous stud-
ies arguing that flapping wings may manipulate the aerodynamics
to produce high performance rather than pursing the resonance

FIG. 14. Instantaneous flow vorticity fields of foil B (time-varying stiffness) in a motion period. Stc = 0.5, β = 1.0, K = 1.42, and ϕ = 0○.
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FIG. 15. Instantaneous flow vorticity fields of foil B (time-varying stiffness) in a motion period. Stc = 0.5, β = 1.0, K = 1.42, and ϕ = 90○.

FIG. 16. Instantaneous pressure fields and corresponding pressure coefficient distributions of foil A (constant stiffness) in a motion period. Stc = 0.5 and K = 1.42.
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FIG. 17. Instantaneous pressure fields and corresponding pressure coefficient distributions of foil B (time-varying stiffness) in a motion period. Stc = 0.5, β = 1.0, K = 1.42,
and ϕ = 0○.

condition.29 Indeed, birds and insects may sense the pressure
changes around the wing and instantaneously adjust the kinematics
to fully exploit the flow energy.

D. Considerations on added mass effect
The thrust generation mechanisms of flight and swimming ani-

mals can be generally classified into (1) the added-mass mecha-
nism, and (2) the lift-based mechanism. For the first mechanism,
the thrust is created by the reaction force from the accelerated
fluid adjacent to the body whereas in the second mechanism, the
thrust force is generated by reorienting the lift force due to vor-
tex shedding and body–wake interaction in the moving direction.49

To clarify which mechanism is dominant in the thrust produc-
tion of the present case, the thrust and lift forces due to added
mass are evaluated in the current section. However, a direct esti-
mation of the added mass force for a flexible flapping foil in a

viscous flow is extremely difficult;50 we, therefore, estimate the
added mass force in the present study by simplifying the flexible
foil as a rigid one by connecting its leading and trailing points,
as demonstrated in Fig. 19(a). The rigid foil undergoes combined
heave and pitch motions, where the heave motion still follows a
sinusoidal function while the instantaneous pitch angle is calcu-
lated from the passive deformation of the foil at the corresponding
instant.

Figure 19(b) illustrates the acceleration vectors acting on the
center of mass of the simplified rigid foil, where ah and ap are acceler-
ations due to heave and pitch motions, respectively. By transforming
ah from the global coordinate system to the body-fixed coordinate
system, the normal (Fan) and tangential (Fat) components of the
added mass force can be written as51

Fan = −CanρVrepan,

Fat = −CatρVrepat ,
(16)
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FIG. 18. Instantaneous pressure fields and corresponding pressure coefficient distributions of foil B (time-varying stiffness) in a motion period. Stc = 0.5, β = 1.0, K = 1.42,
and ϕ = 90○.

where Can (an) and Cat (at) are the added mass coefficients (accel-
erations) in the normal and tangential directions in the body-fixed
system, respectively, and Vrep is the representative volume of the
fluid, which can be formulated as the volume of a cylinder whose
diameter and length are equal to the chordwise and spanwise lengths

FIG. 19. Schematic views of the (a) simplified rigid foil and (b) the acceleration
vectors.

of the foil, i.e., Vrep = πL3
/4.52–54 For a very thin plate, the tangen-

tial component of the added mass coefficient can be approximated
as zero (Cat = 0). Thus, only the added mass force normal to the foil
contributes to the total force acting on the foil. However, the exact
value of Can is not readily available for an oscillating plate. La Mantia
and Dabnichki55 numerically evaluated the added mass tensor for an
oscillating NACA0012 foil, and the normal component of the added
mass coefficient was estimated to be 0.795. Considering the analogy
between the NACA0012 foil and the flat plate, we set Can = 0.795 in
the present estimation as well. Finally, the instantaneous added mass
force in the global coordinate system can be calculated as

Fax = −Fan sin(θ),
Fay = Fan cos(θ). (17)

The thrust and lift coefficients due to the added mass (CT ,a and CL ,a,
respectively) can be computed according to Eqs. (3) and (4). To dif-
ferentiate various force contributions, the total thrust and lift force
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FIG. 20. Instantaneous (a) thrust and (b)
lift forces due to added mass within one
motion period at K = 1.42 and Stc = 0.5.
Foil A has constant stiffness, and foil B
has time-varying stiffness.

coefficients are denoted hereafter as CT ,t and CL ,t , respectively. The
residual force coefficients are then defined as CT ,r = CT ,t − CT ,a and
CL ,r = CL ,t − CL ,a.

Figure 20(a) shows the time history of the thrust coefficient due
to added mass. It is seen that the added mass force produces both
thrust and drag for all three cases. By comparing Fig. 20(a) with
Fig. 8(a), we find that the thrust coefficients of foil A and foil B at
ϕ = 0○ due to added mass (CT ,a) follow similar variation patterns
to the corresponding total thrust coefficients (CT ,t). Interestingly,
foil B at ϕ = 90○ creates considerable thrust owing to added mass
during the downstroke whereas little thrust is observed in Fig. 8(a),

indicating that significant drag force (negative CT ,r) is produced,
which cancels the contribution of the added mass. Figure 20(b)
illustrates the lift coefficients contributed by the added mass. It is
observed that the variation patterns of CL ,a are very different from
those of the total lift coefficients (CL ,t). Specifically, the peaks created
by foil B during the upstroke no longer exist.

Figure 21 summarizes the time-averaged coefficients of the total
thrust force, the thrust force associated with added mass, and the
residual thrust force (i.e., the different between these two) as func-
tions of mean normalized bending stiffness. It is observed that for
foil A [see Fig. 21(a)], the added mass contributes half of the total

FIG. 21. Time-averaged coefficients of
total thrust (CT ,t ), thrust due to added
mass (CT ,a) and the residual thrust (CT ,r )
at Stc = 0.5: (a) foil A, (b) foil B, ϕ = 0○,
and (c) foil B, ϕ = 90○.
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thrust force and the percentage increases even higher at smaller stiff-
ness. For foil B at ϕ = 0○ [see Fig. 21(b)], the contribution from
the added mass is more than 50% for all the flexibilities considered
here. Different from the previous two cases, foil B at ϕ = 90○ [see
Fig. 21(c)] generates thrust force almost solely using the added mass
mechanism. In summary, for all three foils, the added mass con-
tributes significantly (at least 50%) to the total thrust generation. The
present findings agree with the study by Andro and Jacquin,54 where
a flapping NACA0012 foil at Re = 1000 was numerically investigated
and three regimes were identified according to motion frequency.
The first regime is a quasi-steady regime (Stc < 0.1), where the force
is dominated by the leading edge vortices. The second regime is a
transitional regime (0.1 < Stc < 0.5), where the force is mainly created
by wake capture and a small portion of added mass contribution.
The third one is an added mass regime (Stc > 0.5), where the acceler-
ation force becomes the dominant factor. Considering the fact that
the Strouhal number in the present study is Stc = 0.5, it is not a sur-
prise that the added mass contributes more than half of the total
thrust force.

V. CONCLUSIONS
In the present paper, the propulsion performance of a flexible

heaving foil with time-varying stiffness was numerically investigated
using a fully coupled fluid-structure interaction model. Compared
with the foil with constant flexibility (foil A), the performance of the
foil with time-varying stiffness (foil B) was significantly affected by
the phase ϕ between the actuating motion and the time-changing
flexibility. The best propulsion performance of foil B was achieved
at ϕ = 0○, and the maximum time-averaged thrust coefficient was
increased by ∼52% compared with foil A. The highest propulsion
efficiency accomplished by foil B was similar to that of foil A. The
thrust enhancement may become more substantial when the scale of
the wing is restricted.

Besides, the passive deformation of foil B was also consider-
ably influenced by phase ϕ. The deformation of the foil was still at
its first bending mode, but the patterns were no longer symmetri-
cal. The non-symmetrical conformation further led to a deflected
vortex-shedding pattern, which was believed to be the reason for
the lift generation. In addition, foil B at ϕ = 0○ created larger rel-
ative deformation and higher pressure difference simultaneously
during the upstroke, resulting in a surge of thrust force. However,
the largest relative deformation and the highest pressure difference
were accomplished during the downstroke and the upstroke, respec-
tively, when ϕ is 90○, indicating that the exact deformation of the
foil can significantly change the surrounding flow field and the flow
dynamics, in return, will affect the force creation. This is reminis-
cent of a previous study29 that the flapping wing flyers may adjust the
kinematics and deformation instantaneously by sensing the pressure
distribution to improve their performance. With a simplified model,
it was found that the added mass of the foil contributed more than
50% of the total thrust force for both foil A and foil B. It is also
realized that one of the limitations of the present study is that the
heave amplitude and the frequency were fixed values. The effects of
these variables on the dynamics of a foil with time-dependent flexi-
bility and the optimization of the thrust and efficiency within a larger
parameter matrix are subject to future research.
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