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A B S T R A C T

The influence of the plate length on the flow-induced vibration (FIV) of a circular cylinder with a rigid splitter
plate is numerically studied at a low Reynolds number of 100. The mass and damping ratios of the system
are respectively 𝑚∗ = 10 and 𝜁 = 0. The reduced velocity (𝑉𝑟) is varied from 2 to 26 and seven different
nondimensional splitter plate length (𝐿∗) values in the range of 0–2 are considered. Three different response
patterns are identified in the present research, namely vortex-induced vibration (VIV), combined VIV-galloping
and weak VIV-galloping. When the system is undergoing VIV, the frequency synchronisation is delayed and the
lock-in range is enlarged with increasing 𝐿∗. The onset of galloping is postponed with the kink alleviated and
the galloping frequency lowering. Abrupt drops in the vortex and total phases are associated with the initiation
of galloping. In the galloping branch, both vortex and total forces remain in phase with the displacement. For
the added mass and excitation coefficients (𝐶𝑎𝑦 and 𝐶𝑒𝑦) of the cylinder-plate assembly which have rarely been
reported in the literature, 𝐶𝑎𝑦 decreases as 𝑉𝑟 is increased in the VIV range. Nevertheless, it leaps at the onset
of galloping and the galloping response is accompanied by positive 𝐶𝑎𝑦 values. 𝐶𝑒𝑦 is negative in most cases
and its trough appears at beginning of the VIV lock-in range or around the kink in the galloping branch. Due
to the large-amplitude and low-frequency nature of the galloping oscillation, three new multi-vortex wake
patterns (4P, 5P and 6P) are found to take place. Overall, for a longer splitter plate in the present study, the
shear layer reattachment is observed at lower 𝑉𝑟 and the galloping oscillation is associated with more vortex
pairs.
1. Introduction

A splitter plate is a plate attached to a structure so that it splits the
wake. It was originally designed as a type of wake stabiliser due to its
capability of increasing the base pressure (reducing the drag) as well
as eliminating the vortex formation [1]. Extensive studies have been
carried out to better understand how a splitter plate influences the flow
around a stationary circular cylinder. Apelt and his co-workers [2,3]
performed experimental tests in a water tunnel to investigate the flow
past a circular cylinder with a rigid splitter plate. The Reynolds number
(𝑅𝑒 = 𝑈∞𝐷∕𝜈, where 𝑈∞ is the freestream velocity, 𝐷 stands for
the cylinder diameter and 𝜈 denotes the kinematic viscosity of the
fluid) ranged from 104 to 5 × 104 and the plate length (𝐿) to diameter
ratio 𝐿∗ = 𝐿∕𝐷 = 0–7 was adopted. The drag and vortex shedding
frequency were found to decrease progressively with increasing 𝐿∗

until the drag coefficient became a constant and the vortex shedding
was eventually suppressed. Kwon and Choi [4] numerically studied the
control of laminar vortex shedding behind a circular cylinder using
splitter plates. They reported that once 𝐿∗ was larger than a critical
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value, the vortex shedding would completely disappear and this critical
𝐿∗ was proportional to 𝑅𝑒. Anderson and Szewczyk [5] examined the
effect of a splitter plate on the near wake of a circular cylinder at
subcritical 𝑅𝑒 between 2700 and 46000 using wind tunnels. It was
shown that the shear layer characteristics affected the vortex shedding
frequency greatly. The variation of the Strouhal number (𝑆𝑡 = 𝑓𝑠𝑡𝐷∕𝑈∞
with 𝑓𝑠𝑡 being the vortex shedding frequency) for 𝐿∗ = 0–1.75 could be
divided into four distinct regions. Moreover, the splitter plate decreased
the level of three-dimensionality in the formation region by stabilising
the transverse flapping of the shear layers. Deep et al. [6] employed a
proper orthogonal decomposition (POD) technique to analyse the wake
behind a circular cylinder with a splitter plate at 𝑅𝑒 = 100, 125 and
150. For all the cases considered, the first six modes contributed to
more than 95% of the total enstrophy.

Detached splitter plates have also been employed to reduce the flow-
induced forces. Hwang et al. [7] simulated the laminar flow past a
circular cylinder with a detached splitter plate. 𝐿∗ = 1 and 𝑅𝑒 = 30, 100
and 160 were considered. The gap ratio 𝐺∕𝐷, where 𝐺 is the distance
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Nomenclature

𝐴𝑦 Vibration amplitude in cross-flow direction
𝑐 Structural damping coefficient
𝐶𝑎𝑦, 𝐶𝑒𝑦 Added mass coefficient and excitation coef-

ficient
𝐶𝑜max Maximum Courant number
𝐶𝑥, 𝐶 ′

𝑥, 𝐶 ′
𝑦 Mean IL force coefficient, RMS of fluc-

tuating IL force coefficient and RMS of
fluctuating CF force coefficient

𝐷 Diameter of circular cylinder
𝑓1, 𝑓2, 𝑓3 Fine, medium and coarse solutions
𝑓𝑛, 𝑓𝑜𝑦, 𝑓𝑠𝑡 Natural frequency of cylinder-plate assem-

bly, oscillation frequency and Strouhal
frequency

𝐹𝑣𝑜𝑟𝑡𝑒𝑥, 𝐹𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 Vortex force and potential force
𝐹𝑥, 𝐹𝑦, 𝐹𝑝 IL hydrodynamic force, CF hydrodynamic

force and the predicted vortex-induced
force in CF direction

𝐺 Distance between rear base point of cylin-
der and leading edge of splitter plate

𝐺𝐶𝐼 Grid convergence index
𝐈 Unit tensor
𝑘 Structural stiffness
𝐿, 𝐿∗ Splitter plate length and dimensionless

splitter plate length
𝐿𝑓 Vortex formation length
𝑚, 𝑚𝑑 , 𝑚∗ Structural mass, mass of displaced fluid and

mass ratio of cylinder-plate system
𝑛 Number of time step
𝐧, 𝐧𝑥, 𝐧𝑦 Outward-pointing normal vector, IL compo-

nent of normal vector and CF component of
normal vector

𝑁𝑏, 𝑁𝑐 , 𝑁𝑠 Number of elements for background mesh,
number of elements for component mesh
and total number of samples

between the rear base point of the cylinder and the leading edge of
the splitter plate was changed from 0 to 5. It was discovered that there
existed an optimal location of the plate for the maximum reduction
of the flow-induced forces. However, beyond the optimal location, the
flow-induced forces increased sharply. Similar observations were also
reported by Dehkordi and Jafari [8] and Serson et al. [9] in their
numerical studies. Akilli et al. [10] conducted water tunnel tests to
investigate the flow behaviours around a circular cylinder controlled by
a splitter plate placed at various locations downstream the cylinder in
shallow water. The results showed that the splitter plate had a substan-
tial effect on the suppression of the vortex shedding for 𝐺∕𝐷 between
0 and 1.75. When 𝐺∕𝐷 = 2, the effect of the plate was eliminated.
The splitter plates in the aforementioned research were solid which
prohibited the communication between the two shear layers through
the plates. Cardell [11] presented his experimental work on the effect
of a permeable splitter plate on the flow past a circular cylinder. When
the permeability was high, the flow in the near wake resembled the no
splitter plate case. However, for a low permeability, the near wake was
almost disconnected from the vortices formed further downstream.

Previous studies have proven that a free-to-rotate splitter plate
could lower the drag and lift forces on the cylinder as well. Cimbala
and Garg [12] experimentally investigated the flow in the wake of a
freely rotatable cylinder with a splitter plate using a wind tunnel at
𝑅𝑒 = 5 × 103–2 × 104. 𝐿∗ in the range of 0–5 was considered. The
2

combination of the cylinder and the splitter plate could rotate unre-
𝑝, 𝑝𝑟𝑒𝑓 Pressure and reference pressure
𝑃 Order of accuracy
𝑟 Grid refinement factor
𝑅𝑒 Reynolds number
𝑆𝑡 Strouhal number
𝑡 Time
𝑡𝑝 Thickness of splitter plate
𝑇𝑜𝑦 Oscillation period of cylinder-plate assem-

bly
𝐮, 𝑈∞ Velocity vector of flow field and freestream

velocity
𝑉𝑟 Reduced velocity
𝑦, �̇�, ÿ CF displacement, CF velocity and CF accel-

eration
𝑦max, 𝑦min Maximum CF displacement and minimum

CF displacement
𝛽 Real parameter in Newmark-𝛽 method
𝛤 Surface of cylinder-plate system
𝛾 Real parameter in Newmark-𝛽 method
𝛥𝑡 Time-step size
𝜀21, 𝜀32 Difference between the medium and fine

solutions and difference between the coarse
and medium solutions

𝜁 Structural damping ratio
𝜇 Dynamic viscosity of fluid
𝜈 Kinematic viscosity of fluid
𝜌 Density of fluid
𝝈𝑓 Sum of pressure contributed stress compo-

nent and viscous contributed stress compo-
nent

𝜙𝑣𝑜𝑟𝑡𝑒𝑥, 𝜙𝑡𝑜𝑡𝑎𝑙 Vortex phase and total phase
𝜔𝑧 Nondimensional spanwise vorticity

strictedly about the longitudinal axis of the cylinder. It was found that
for the 𝐿∗ values considered, the splitter plate rotated to some off-axis
equilibrium angle rather than aligning itself to the free stream. Cimbala
and Chen [13] further analysed the freely rotatable cylinder/splitter
plate body in transitional and supercritical 𝑅𝑒 ranges. The authors
noted that for the cases with 𝐿∗ > 1, the splitter plate started to oscillate
between the extremes on either side in the transitional 𝑅𝑒 range. At
supercritical 𝑅𝑒, the splitter plate with 𝐿∗ ≤ 2 was managed to regain
a new equilibrium angle, whereas for the cases with 𝐿∗ ≥ 2.5, the
cylinder/splitter plate body continued to oscillate. Similar bifurcating
behaviours were confirmed by the numerical results of Lu et al. [14]
at low 𝑅𝑒. Gu et al. [15] carried out wind tunnel tests on the flow
around a circular cylinder with a splitter plate freely rotatable around
the cylinder axis. In their study, 𝑅𝑒 = 3 × 104–6 × 104 and 𝐿∗ ranged
from 0.5 to 6. 𝐿∗ was crucial in determining the equilibrium angle
and longer plates led to smaller angles. The mean drag and the root-
mean-square fluctuating lift coefficients were less than those of the
corresponding plain cylinder with reduction up to 30% and 90%,
respectively. Sudhakar and Vengadesan [16] numerically studied the
vortex shedding characteristics and the drag force on a circular cylinder
attached with an oscillating splitter plate at 𝑅𝑒 = 100. The results
indicated that the vortex shedding could be completely suppressed by
a short splitter plate with 𝐿∗ = 1 oscillating at very low frequencies. In
contrast, when the plate was stationary, 𝐿∗ = 5 was required to achieve
such a suppression.

The vortex shedding suppression and drag reduction capabilities
of the splitter plates have promoted their utilisation in suppressing
the flow-induced vibration (FIV) of cylindrical structures [17–21].
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However, existing research showed that a sufficiently long splitter plate
was required in order to suppress the FIV successfully [22–24]. For a
small 𝐿∗, the oscillation of the cylinder might even be exaggerated
and galloping-type response could be induced [25–29]. Stappenbelt
[22] experimentally investigated the effect of a splitter plate on the
dynamics and kinematics of a circular cylinder free to oscillate in the
transverse direction. 𝑅𝑒 ranged from 1.26×104 to 8.4×104 and 𝐿∗ = 0–4
was examined over a reduced velocity (𝑉𝑟 = 𝑈∞∕𝑓𝑛𝐷, where 𝑓𝑛 is the
natural frequency of the system) interval of 3 to 60. The attachment
of a rigid splitter plate to an elastically restrained circular cylinder
introduced the potential for a galloping-type behaviour. As 𝐿∗ was
increased, there was a smooth transition from pure VIV to galloping
response. The mitigation of FIV was not achieved until 𝐿∗ ≥ 2.8. Assi
et al. [25] conducted experiments on the dynamic response of a circular
cylinder with a free-to-rotate short-tail fairing and a splitter plate.
Non-rotating short splitter plates gave rise to severe galloping over a
considerable range of flow velocities. The particle image velocimetry
(PIV) measurements suggested that as 𝑉𝑟 was increased, the vortex
formation length was reduced and reattachment of the shear layers
was achieved, resulting in the galloping instabilities of the system. The
transverse galloping of a circular cylinder fitted with solid and slotted
splitter plates was studied at 𝑅𝑒 = 1500–16000 by Assi and Bearman
[30]. Different splitter plates with variations in plate length and plate
porosity were considered. Solid splitter plates of 0.5 and 1 diameter
in length were found to produce severe galloping responses. A slotted
plate with porosity ratio of 30% also caused considerable vibration
but with a reduced rate of increase with the flow velocity. Galloping
mechanism was responsible for extracting energy from the flow and
driving the oscillations and the reattachment of the free shear layers
on the tip of the plate was the hydrodynamic mechanism driving the
excitation. Law and Jaiman [31] studied the FIV of a circular cylinder
with a rigid splitter plate at a low 𝑅𝑒 of 100. The cylinder-plate system
had a mass ratio (𝑚∗ = 𝑚∕𝑚𝑑 , where 𝑚 is the structural mass and 𝑚𝑑
represents the mass of the displaced fluid) of 2.6 and the damping ratio
was 𝜁 = 0.001. Large amplitude galloping response was observed at
high 𝑉𝑟. Four oscillation patterns were categorised in the wind tunnel
experiment of Liang et al. [26], i.e., VIV, complete interaction of VIV-
galloping, combined weak VIV and interaction of VIV and galloping and
combined weak VIV and pure galloping. The weak oscillation in VIV
could accelerate the stabilisation of galloping when the cylinder was
released from rest at a given flow velocity. Sun et al. [28] simulated
the FIV of an elastically supported cylinder-plate assembly with 𝐿∗ = 0–
1.5 at 𝑅𝑒 = 100. As 𝐿∗ was increased, three FIV modes were observed
successively: VIV, coupled VIV and galloping and separated VIV and
galloping. The lift components generated from the splitter plate and
the cylinder acted as the driving and suppressing forces of galloping,
respectively. Sun et al. [24] presented a comprehensive experimental
campaign on the transition of FIV for a circular cylinder with splitter
plates. In the range of 𝐿∗ investigated, five oscillation patterns were
identified sequentially: VIV, combined VIV-galloping, separated weak
VIV (WVIV)-galloping, WVIV and weak galloping and WVIV and desyn-
chronisation. The oscillation could be well suppressed when 𝐿∗ > 3.2.
The transition from VIV to galloping was the competition of vortex
shedding and reattachment of the free shear layers. Harmonic force
component at three times the oscillation frequency was associated
with the galloping dominated region of 𝐿∗ = 0.4–1.8. Sun et al. [1]
experimentally investigated the FIV of a cylinder with an upstream
rigid splitter plate (USP), a downstream plate (DSP) and symmetrically
arranged splitter plates in the 𝑅𝑒 range of 1100–7700 with 𝐿∗ = 0–
3.6. It was found that both USP and DSP could mitigate the oscillation
and reduce the drag. Whereas, significant galloping oscillation was
observed for DSP with 𝐿∗ = 0.4–3.2. Weak galloping was excited with
the combination of USP and DSP and 𝐿∗ = 1–1.8. Cui et al. [32]
conducted experimental tests to study the control of FIV of a circular
cylinder with rigid and flexible splitter plates. 𝑅𝑒 in their experiment
3

anged from 1680 to 8720. With a rigid splitter plate, both VIV and
galloping were observed. Although the amplitude in the lock-in range
was reduced, it increased linearly at high 𝑉𝑟.

According to the literature review above, there have been a number
of experimental and numerical studies on the FIV of a circular cylin-
der with a rigid splitter plate. However, existing research is mostly
focused on the response features. Details about the hydrodynamic
coefficients especially the added mass and excitation coefficients for
such a system have rarely been reported. Moreover, the multi-vortex
wake patterns associated with the galloping oscillation have not been
properly addressed. In this paper, the FIV of an elastically mounted
circular cylinder fitted with rigid splitter plates of different 𝐿∗ values
is numerically investigated at 𝑅𝑒 = 100. The cylinder-plate system has a
mass ratio of 10. 𝐿∗ ranging from 0 to 2 is adopted to evaluate its effect
on the FIV characteristics. Besides systematically studying the dynamic
responses, particular attention is paid to the hydrodynamic coefficients
and vortex shedding modes to unveil the underlying fluid–structure
interaction (FSI) mechanisms. The rest of the paper are organised as
follows: The numerical method utilised in the present study is detailed
in Section 2. A description of the problem investigated is provided in
Section 3. The simulation results are presented with in-depth discussion
in Section 4. Finally, the main conclusions of this paper are summarised
in Section 5.

2. Numerical method

In this section, details about the flow model, the structural dynamic
model and the fluid–structure interaction strategy employed in the
present numerical simulation are provided.

2.1. Flow model

The governing equations in the fluid domain are the two-
dimensional (2D) unsteady incompressible Navier–Stokes (N–S) equa-
tions formulated as

∇ ⋅ 𝐮 = 0 (1)

𝜕𝐮
𝜕𝑡

+ ∇ ⋅ (𝐮𝐮) = −1
𝜌
∇𝑝 + 𝜈∇2𝐮 (2)

here 𝐮 stands for the velocity vector of the flow field, 𝑡 denotes the
ime, 𝜌 is the fluid density, 𝑝 represents the pressure and 𝜈 is the
inematic viscosity of the fluid.

The open source computational fluid dynamics (CFD) toolbox Open-
OAM is adopted to simulate the flow field. A finite volume method
FVM) is used for the discretisation of the N–S equations. The transient
erm is discretised with a second-order implicit backward scheme,
hile a second-order upwind scheme is used for the convective terms.
he pressure-velocity coupling is solved by the pressure-implicit with
plitting of operators (PISO) algorithm [33] in a segregated manner.
he overset (also known as Chimera) mesh method is employed to
andle the dynamic mesh. It is advantageous to deal with problems
nvolving large displacements and/or relative motion of multiple bodies
ithout compromising the mesh quality which may be degraded by the
xcessive deformation in the mesh morphing method. For the overset
esh technique, a background grid is firstly generated to discretise

he whole computational domain without considering any solid body.
hen, each object of interest is wrapped with a body-fitted mesh as
component mesh and overlaps with the background and/or other

omponent meshes. As demonstrated in Fig. 1, cells are classified into
he fringe cells which need interpolation from other meshes, field cells
hich are involved in solving the N–S equations and hole cells that
re located inside the solid bodies. A distance based implicit method
ided by a regular voxel mesh is employed to quickly cut out the
ole. Detailed description of this hole cutting method can be found
n Chan and Pandya [34],Druyor [35] and Chen et al. [36]. In order
o obtain the solution in the whole computational domain, exchange
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Fig. 1. Different cell types in the overset mesh technique. The colours correspond to:
blue—field cells involved in solving the Navier–Stokes equations, white—fringe cells
exchanging information with other meshes through interpolation and red—hole cells
located inside the solid body.

of the flow information between the different meshes is crucial besides
the aforementioned overset mesh assembly. This is realised by using
the fringes and donors. A fringe point/cell, also named a receptor,
receives the solution information from its donors on the sibling meshes.
Interpolations of the flow variables of the donors are performed to
obtain those at the receptor. In the present simulation, a distance
weighted function is adopted for the information exchange.

2.2. Structural dynamic model

The 1DOF FIV of a circular cylinder with a rigid splitter plate in the
transverse direction can be described by

𝑚�̈� + 𝑐�̇� + 𝑘𝑦 = 𝐹𝑦 (3)

where 𝑚, 𝑐 and 𝑘 are respectively the structural mass, damping co-
efficient and stiffness, 𝑦 is the cross-flow (CF) displacement of the
cylinder-plate assembly, a dot denotes differentiation with respect to
time and 𝐹𝑦 is the hydrodynamic force in the transverse direction.

The implicit Newmark-𝛽 method with a second-order accuracy as
detailed in Newmark [37] is used to integrate the equation of motion.
This method relates the displacement, velocity and acceleration from
time step 𝑛 to 𝑛 + 1 in the following way:

�̇�𝑛+1 = �̇�𝑛 + 𝛥𝑡
[

(1 − 𝛾) �̈�𝑛 + 𝛾�̈�𝑛+1
]

(4)

𝑦𝑛+1 = 𝑦𝑛 + 𝛥𝑡�̇�𝑛 + 𝛥𝑡2

2
[

(1 − 2𝛽) �̈�𝑛 + 2𝛽�̈�𝑛+1
]

(5)

here the superscripts represent the time-step numbers, 𝛥𝑡 is the time-
step size, 𝛽 and 𝛾 are two real parameters concerning the accuracy
and stability of the integration method. In this study, 𝛽 = 1∕4 and
𝛾 = 1∕2 are chosen corresponding to the average acceleration method
with unconditional stability.

2.3. Fluid–structure interaction

A loosely coupled strategy is adopted in the present FSI simulation,
i.e., the flow field and the dynamic response of the structure are solved
successively within a given time step. The FSI procedures are briefly
summarised as follows: (i) The interpolation stencils are generated for
the communication between the different meshes and the N–S equa-
tions are solved to compute the hydrodynamic forces on the structure;
(ii) the hydrodynamic loads are transferred to the structural dynamic
model to derive the motion quantities of the system; (iii) the new mesh
configuration is evaluated based on the motion quantities of the system
4

and the interpolation stencils are updated; (iv) the N–S equations are
then solved on the new mesh configuration. This FSI loop is repeated
every time step until the end of the simulation. The same numerical
methods as well as the fluid–structure interaction procedures have been
employed in our previous studies on the FIV of a circular cylinder and
a circular cylinder with a base column [38,39].

3. Problem description

This section starts with an introduction to the simulation param-
eters, followed by the descriptions of the computational domain and
the boundary conditions. In addition, the validation of the present
numerical method together with the mesh dependency tests is given.

3.1. Simulation parameters

2D numerical simulation is performed for the FIV of an elastically
supported circular cylinder fitted with a rigid splitter plate (i.e., the
rotational and flexural motion of the splitter plate is constrained). The
diameter of the circular cylinder is 𝐷 and the length of the splitter plate
is 𝐿. The dimensionless splitter plate length is subsequently expressed
as 𝐿∗ = 𝐿∕𝐷. The splitter plate has a thickness of 𝑡𝑝 = 0.06𝐷. The
mass ratio is kept constant at 10. Zero damping is considered for the
cylinder-plate assembly in order to maximise its FIV response. The
system is allowed to vibrate in the CF direction only. 𝑅𝑒 is fixed at
100 in the present simulation. It was discussed by Serson et al. [9] that
the splitter plate had a stabilising effect on the flow which delayed
the appearance of three-dimensional (3D) structures to higher 𝑅𝑒. In
their study, 2D flow persisted up to 𝑅𝑒 = 200. The flow at 𝑅𝑒 = 100
in this study is essentially 2D and laminar and it can be modelled by
directly solving the 2D unsteady incompressible N–S equations without
the potential uncertainties introduced by the utilisation of turbulence
models. Similar 2D and laminar assumptions were also adopted by Law
and Jaiman [31], Sun et al. [28], Zhu et al. [27] and Tang et al. [29]
in their simulations of FIV of a cylinder-plate assembly at similar 𝑅𝑒
values. Previous studies by Leontini et al. [40],Bao et al. [41] and Wang
et al. [38] unveiled that the FIV of rigid structures at low 𝑅𝑒 shared
comparable response features to that at high 𝑅𝑒. Moreover, studies on
the FIV of the cylinder-plate assembly at low 𝑅𝑒 are also of fundamental
research interest from a flow physics point of view. 𝑉𝑟 in this study is
gradually varied from 2 to 26 with an increment of 1. Seven different
𝐿∗ values are considered, i.e., 𝐿∗ = 0 (corresponding to the plain
cylinder), 0.25, 0.5, 0.75, 1, 1.5 and 2. The choice of the 𝐿∗ range
stems from the following considerations: 𝐿∗ = 0 serves as the baseline
case where there is no splitter plate. According to the experimental
data of Stappenbelt [22] and Sun et al. [24], the FIV was significantly
reduced once 𝐿∗ was beyond 2. As this paper is mainly focused on the
FIV characteristics, cases with longer plate where the FIV is suppressed
are beyond the scope of the present research and the maximum 𝐿∗

value is consequently selected as 2.

3.2. Computational domain and boundary conditions

A 75𝐷 × 50𝐷 rectangular computational domain as shown in
Fig. 2(a) is utilised in the present study. The centre of gravity (COG)
of the oscillating system coincides with the origin of the Cartesian
coordinate system which is located 25𝐷 downstream the inlet boundary
and 25𝐷 away from the two lateral boundaries. Fig. 2(b) depicts
the overall computational mesh and a close-up of the mesh around
the cylinder-plate assembly. The following are the details about the
boundary conditions in the simulation: The surface of the cylinder-plate
assembly is assumed to be smooth where a no-slip boundary condition
with 𝐮 = (0, �̇�) is used. The freestream velocity is applied to the inlet
boundary as 𝐮 =

(

𝑈∞, 0
)

, while the gradients of the fluid velocity in the
streamwise direction are set to zero on the outlet boundary. For the two
transverse boundaries, a free-slip boundary condition with the velocity
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Fig. 2. (a) Schematics of the FIV of a circular cylinder with a rigid splitter plate and the computational domain and (b) computational mesh and a close-up of the mesh around
the cylinder-plate assembly.
Fig. 3. Comparisons of the amplitude and frequency (𝐴𝑦∕𝐷 and 𝑓𝑜𝑦∕𝑓𝑛) responses for the VIV of a plain cylinder between the present results and those by Zhao et al. [42] and Soti
and De [43]: (a) amplitude response and (b) frequency response. Blue circles—present results, red squares—Zhao et al. [42] and black crosses–Soti and De [43]; in (b): horizontal
grey dashed line denotes nondimensional oscillation frequency 𝑓𝑜𝑦∕𝑓𝑛 = 1 and inclined grey dashed line represents dimensionless Strouhal frequency 𝑓𝑠𝑡∕𝑓𝑛.
in the normal direction of the boundaries being zero is employed. In
terms of the boundary conditions for the pressure, a zero gradient
boundary condition is adopted for the pressure on all the boundaries
except the outlet one on which a zero reference pressure (𝑝𝑟𝑒𝑓 = 0) is
imposed. For the motion quantities of the system, zero displacement
and velocity (𝑦 = 0 and �̇� = 0) are assigned as the initial conditions.
Adaptive time-step sizes are employed in the present simulation and the
time-step size is adjusted to meet the Courant–Friedrichs–Lewy (CFL)
condition that the maximum Courant number (𝐶 ) is less than 0.5.
5

𝑜max
3.3. Validation and verification

Simulation is conducted for the VIV of an elastically mounted
circular cylinder to validate the present numerical method. In order
to facilitate the comparison, the same flow and structural parameters
as those in Zhao et al. [42] and Soti and De [43] are used with
𝑅𝑒 = 100, 𝑚∗ = 10 and 𝜁 = 0. The 𝑉𝑟 range is from 4 to 9.
Fig. 3 shows the comparisons of the amplitude and frequency responses
for the transverse vibration of the bare cylinder as functions of 𝑉 .
𝑟
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Table 1
Comparison of the simulation results from three different meshes.

Mesh 𝑁𝑐 𝑁𝑏 𝐴𝑦∕𝐷 𝑓𝑜𝑦∕𝑓𝑛 𝐶𝑥 𝐶 ′
𝑥 𝐶 ′

𝑦

M1 6316 50622 1.0040 0.7711 1.2423 0.1053 1.1606
M2 8851 71400 0.9953 0.7615 1.2411 0.1048 1.1640
M3 12403 102720 0.9889 0.7542 1.2404 0.1045 1.1643

Following the benchmark cases [42,43], the vibration amplitude in the
CF direction 𝐴𝑦 is defined as 𝐴𝑦 =

(

𝑦max − 𝑦min
)

∕2, where 𝑦max and 𝑦min
are respectively the maximum and minimum displacements. The Lomb–
Scargle Periodogram [44] is used to determine the oscillation frequency
𝑓𝑜𝑦 from unevenly sampled displacement data. It can be seen from the
figure that the variations of the nondimensional vibration amplitude
𝐴𝑦∕𝐷 and normalised oscillation frequency 𝑓𝑜𝑦∕𝑓𝑛 agree well with
those in the existing publications. The maximum 𝐴𝑦∕𝐷 ≈ 0.6 appears at
the same 𝑉𝑟 of 5 as the two previous studies and the computed lock-in
ranges in the present and the other simulations are also identical with
𝑉𝑟 = 5–8. The overall agreement indicates that the present numerical
method is reliable for predicting the FIV response of an elastically
mounted structure with reasonable accuracy at low 𝑅𝑒.

Before systematically investigating the FIV characteristics of a circu-
lar cylinder attached with different splitter plates, a mesh dependency
study is performed to make sure that further refinement of the mesh
has negligible influence on the numerical results. The parameters of
the chosen cylinder-plate assembly for the mesh dependency tests are
𝑚∗ = 10, 𝜁 = 0 and 𝐿∗ = 1 with 𝑉𝑟 being 13 at 𝑅𝑒 = 100. Three different

eshes are generated with a grid refinement factor approximately
=

√

2 as suggested by Terziev et al. [45] and Song et al. [46]. The
effect of the mesh density on the simulation results is examined. The
comparison of the simulation results from three different mesh systems
is tabulated in Table 1. 𝑁𝑐 and 𝑁𝑏 are the numbers of elements for
the component and background meshes, respectively. The in-line (IL)
and CF force coefficients are given by 𝐶𝑥 = 𝐹𝑥∕

(

0.5𝜌𝑈2
∞𝐷

)

and 𝐶𝑦 =
𝐹𝑦∕

(

0.5𝜌𝑈2
∞𝐷

)

, where 𝐹𝑥 = ∫𝛤
(

𝝈𝑓 ⋅ 𝐧
)

⋅ 𝐧𝑥𝑑𝛤 and 𝐹𝑦 = ∫𝛤
(

𝝈𝑓 ⋅ 𝐧
)

⋅
𝐧𝑦𝑑𝛤 are respectively the IL and CF hydrodynamic forces. Herein, 𝛤
denotes the surface of the cylinder-plate system, the fluid stress tensor
𝝈𝑓 is considered as a sum of a pressure contributed stress component
and a viscous contributed stress component: 𝝈𝑓 = −𝑝𝐈+𝜇

(

∇𝐮 + (∇𝐮)𝑇
)

,
here 𝐈 represents the unit tensor, 𝜇 stands for the dynamic viscosity of

the fluid, 𝐧 is the outward-pointing vector normal to the surface of the
cylinder-plate assembly and 𝐧𝑥 and 𝐧𝑦 are the Cartesian components
of 𝐧. 𝐶𝑥 represents the mean IL force coefficient, 𝐶 ′

𝑥 denotes the root
ean square (RMS) value of the fluctuating IL force coefficient and
′
𝑦 is the RMS value of the oscillating CF force coefficient. As shown

n the table, the maximum difference between M1 (coarse mesh) and
2 (medium mesh) is around 1.2568% and is observed for 𝑓𝑜𝑦∕𝑓𝑛. The
aximum difference between M2 and M3 (fine mesh) also appears in
𝑜𝑦∕𝑓𝑛, whereas it reduces to 0.9646%. Balancing the accuracy and
he computational cost, the mesh density of M2 is selected and the
omputational meshes for 𝐿∗ other than 1 are generated based on this
esh density.

Our previous study showed that the numerical uncertainty of the
odel was governed by the grid uncertainty and other sources of errors

uch as the time-step size and iterative convergence were almost negli-
ible [47]. In this study, the grid convergence index (GCI) is utilised
o quantify the numerical uncertainty. The GCI requires three grid
olutions. Here, the data from the three grids of the mesh dependency
est in Table 1 are employed. Systematic refinement of the grid twice
ith 𝑟 =

√

2 yields the coarse (𝑓3), medium (𝑓2) and fine (𝑓1) solutions.
ccording to Stern et al. [48], the order of accuracy 𝑃 can be estimated
y using the following equations:

=
ln
(

𝜀32∕𝜀21
)

ln (𝑟)
(6)

𝜀 = 𝑓 − 𝑓 (7)
6

𝑖+1,𝑖 𝑖+1 𝑖
Table 2
Numerical uncertainty assessment results.

𝜀32 𝜀21 𝑝 𝐺𝐶𝐼32 𝐺𝐶𝐼21
𝐴𝑦∕𝐷 0.0087 0.0064 0.8985 2.9890% 2.2033%
𝑓𝑜𝑦∕𝑓𝑛 0.0096 0.0073 0.7912 4.9798% 3.8221%
𝐶𝑥 0.0011 0.0007 1.2451 0.2125% 0.1381%
𝐶 ′
𝑥 0.0005 0.0003 1.4382 0.8688% 0.5292%

𝐶 ′
𝑦 −0.0034 −0.0003 7.5111 0.0296% 0.0022%

where 𝜀21 is the difference between the medium and fine solutions and
32 is the difference between the coarse and medium solutions. 𝑝 is used
o predict the GCI uncertainty:

𝐶𝐼𝑖+1,𝑖 = 𝐹𝑠
|𝜀𝑖+1,𝑖|

𝑓𝑖
(

𝑟𝑃 − 1
) (8)

The safety factor 𝐹𝑠 is selected as 1.25 [49]. The results for the
uncertainty assessment are summarised in Table 2. It can be seen from
the table that there is a reduction in the GCI value for successive grid
refinements (𝐺𝐶𝐼21 < 𝐺𝐶𝐼32) about each of the five variables. The GCI
uncertainty is less than 5% even for the coarse grid. Such performance
is deemed acceptable.

4. Results and discussion

In this section, the influence of the splitter plate length on the
amplitude and frequency responses, the phase differences between the
transverse force coefficients and the cross-flow displacement, the hy-
drodynamic coefficients as well as the wake flow patterns is analysed.

4.1. Amplitude and frequency responses

The variations of 𝐴𝑦∕𝐷 and 𝑓𝑜𝑦∕𝑓𝑛 of the cylinder-plate assembly
with 𝑉𝑟 for different 𝐿∗ are demonstrated in Fig. 4. As shown in
Fig. 4(a), the 𝐴𝑦∕𝐷 curves of small 𝐿∗ values (𝐿∗ = 0.25 and 0.5)
resemble that of the plain cylinder (𝐿∗ = 0) and demonstrate classic
VIV response characteristics. With the increase in 𝐿∗, the onset of VIV
is delayed slightly from 𝑉𝑟 = 5 to 𝑉𝑟 = 6, which can be attributed
to the decrease in 𝑆𝑡 from 0.167 for the plain cylinder to 0.149 for
𝐿∗ = 0.5. The decrease in 𝑆𝑡 for the small 𝐿∗ cases was also reported
by Apelt et al. [2] and Anderson and Szewczyk [5]. As 𝐿∗ is increased
from 0 to 0.5, there is a significant increase in the maximum attainable
𝐴𝑦∕𝐷 from a value of 0.6 typical for the 1DOF VIV at low 𝑅𝑒 to around
1 comparable with the 1DOF VIV at subcritical 𝑅𝑒. Another stunning
feature is the widening of the 𝑉𝑟 range corresponding to large 𝐴𝑦∕𝐷
with increasing 𝐿∗. Larger-amplitude oscillations are witnessed only in
the range of 𝑉𝑟 = 5–8 at 𝐿∗ = 0 while this range is enlarged to 𝑉𝑟 = 6–
18 in the case of 𝐿∗ = 0.5. Moreover, the slope of the initial branch
(IB) decreases with the increase in 𝐿∗ indicating the enhancement of
the stabilisation effect of the rigid splitter plate [24]. In terms of the
frequency responses in Fig. 4(b), the 𝑓𝑜𝑦∕𝑓𝑛 curves of 𝐿∗ = 0, 0.25 and
0.5 nearly coincide with each other at low 𝑉𝑟. Similar to the amplitude
responses, the onset of the frequency lock in is also postponed a little
as 𝐿∗ is increased. The plateau of 𝑓𝑜𝑦∕𝑓𝑛 is apparently prolonged with
a slight decrease in its value from unity to around 0.93 when 𝐿∗

is varied from 0 to 0.5. After the frequency synchronisation, 𝑓𝑜𝑦∕𝑓𝑛
maintains a linearly increasing trend along the Strouhal frequency for
each configuration. As mentioned earlier, 𝑆𝑡 for the system with a
longer splitter plate is slightly lower leading to the discrepancies in the
𝑓𝑜𝑦∕𝑓𝑛 curves at high 𝑉𝑟.

In the present study, galloping-type responses characterised by the
low frequency oscillations whose amplitude would build up monoton-
ically with the flow velocity emerge when 𝐿∗ ≥ 0.75. As discussed
by Sun et al. [24], the FIV in the 𝐿∗ = 0.75 case can be categorised
as the combined VIV-galloping pattern. For this specific 𝐿∗, 𝐴𝑦∕𝐷
increases steadily with the increase in 𝑉 . Then, a local peak of 𝐴 ∕𝐷 is
𝑟 𝑦
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Fig. 4. Variations of the amplitude and frequency (𝐴𝑦∕𝐷 and 𝑓𝑜𝑦∕𝑓𝑛) responses of the cylinder-plate assembly with the reduced velocity (𝑉𝑟) for different nondimensional splitter
plate length (𝐿∗) values: (a) amplitude response and (b) frequency response. Blue circles–𝐿∗ = 0, red squares–𝐿∗ = 0.25, black diamonds–𝐿∗ = 0.5, pink plus signs–𝐿∗ = 0.75, green
pward-pointing triangles–𝐿∗ = 1, cyan crosses–𝐿∗ = 1.5 and purple right-pointing triangles–𝐿∗ = 2.
Fig. 5. Time histories and normalised power spectral density (PSD) plots of the displacement and force coefficient in the transverse direction (𝑦∕𝐷 and 𝐶𝑦) for the nondimensional
plitter plate length 𝐿∗ = 0.75 and different reduced velocities (𝑉𝑟): (a) 𝑉𝑟 = 10, (b) 𝑉𝑟 = 16 and (c) 𝑉𝑟 = 24. In each subfigure, the upper plot includes the time histories of 𝑦∕𝐷
nd 𝐶𝑦, the lower left plot presents the normalised PSD plot of 𝑦∕𝐷 and the normalised PSD plot of 𝐶𝑦 is depicted in the lower right plot; blue lines–𝑦∕𝐷 and red lines–𝐶𝑦.
bserved at 𝑉𝑟 = 15. After the peak, 𝐴𝑦∕𝐷 starts to rise up with a slope
ifferent from the one in the range of 𝑉𝑟 = 6–14. A similar kink in the
alloping response was also observed by Bearman et al. [50], Nemes
t al. [51], Bourguet and Jacono [52], Sahu et al. [53], Zhao et al.
54] and Sun et al. [28]. As for the 𝑓𝑜𝑦∕𝑓𝑛 curve, it first follows the
𝑡 frequency of the stationary cylinder-plate system. Then, it flattens
ut at 𝑉𝑟 around 6 with a frequency lower than the synchronised
requencies of 𝐿∗ = 0–0.5. Beyond 𝑉𝑟 = 6, no significant deviation
n the variation trend of the 𝑓𝑜𝑦∕𝑓𝑛 is found. Here, the time histories
nd normalised power spectral density (PSD) plots of 𝑦∕𝐷 and 𝐶𝑦 for
𝑟 = 10 (before the kink), 16 (near the kink) and 24 (after the kink)
re presented in Fig. 5. The time series are drawn with respect to the
ondimensional time 𝜏 = 𝑡𝑈∞∕𝐷 and each PSD plot is normalised with
ts maximum power. It can be seen that with the increase in 𝑉𝑟, a
hird harmonic frequency component appears in 𝐶𝑦, which agrees with
he conclusion of Bearman et al. [50] that the kink in the response
ould be attributed to the transverse force component at three times the
scillation frequency. Considering the contributions of both the lift and
rag forces in the total transverse force, the third harmonic component
ould be easily found for the cylinder fitted with a rigid splitter plate.
ne may refer to Sun et al. [24] for the detailed analyses.

The amplitude and frequency response curves of 𝐿∗ = 1, 1.5 and
accord with the WVIV-galloping pattern. A narrow region of weak

IV with 𝐴𝑦∕𝐷 < 0.15 is found at low 𝑉𝑟. The local peaks of 𝐿∗ = 1
nd 1.5 are observed at an identical 𝑉𝑟 of 6 with values around 0.035.
s 𝐿∗ is increased to 2, the local peak of 𝐴𝑦∕𝐷 shifts to a lower

𝑉 of 4 and its value increases to 0.14. 𝐴 ∕𝐷 falls after reaching its
7

𝑟 𝑦
local peak. The system with 𝐿∗ = 1 enters the galloping response
first at 𝑉𝑟 = 7. The onset of galloping is delayed to higher 𝑉𝑟 with
increasing 𝐿∗. An obvious kink is observed for 𝐿∗ = 1 at 𝑉𝑟 around
13 and 14 before the 𝐴𝑦∕𝐷 curve switches to another increasing rate.
As 𝐿∗ is increased, the kink gradually diminishes and the slope of
the galloping branch becomes milder. Fig. 6 shows the time histories
and normalised PSD plots of 𝑦∕𝐷 and 𝐶𝑦 at 𝑉𝑟 = 4 (WVIV peak), 10
(onset of galloping) and 24 (high end of the 𝑉𝑟 range) for 𝐿∗ = 2.
It is demonstrated that the third harmonic frequency component with
increasing 𝑉𝑟 is not as obvious as that in Fig. 5. Therefore, no evident
kink appears in the response curve. The frequency responses in Fig. 4(b)
show that the 𝑓𝑜𝑦∕𝑓𝑛 values of 𝐿∗ = 1, 1.5 and 2 increase along their
own 𝑆𝑡 frequencies without evident synchronisation with their natural
frequencies. Once galloping is initiated, 𝑓𝑜𝑦∕𝑓𝑛 drops and keeps nearly
constant throughout the galloping branch. The larger 𝐿∗ is associated
with a lower 𝑓𝑜𝑦∕𝑓𝑛 in the galloping regime. Similar conclusion that
𝑓𝑜𝑦∕𝑓𝑛 decreased with increasing 𝐿∗ was also reached in the numerical
study of Sun et al. [28]. Analogous to the 𝐿∗ = 0.75 case, there are no
significant variations in the frequency responses around the kinks.

As argued by Govardhan and Williamson [55], the branching be-
haviours of the VIV of an elastically supported circular cylinder are
associated with the jumps in the vortex and total phases (𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and
𝜙𝑡𝑜𝑡𝑎𝑙). 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 is the phase difference between vortex force 𝐹𝑣𝑜𝑟𝑡𝑒𝑥 and 𝑦
while 𝜙𝑡𝑜𝑡𝑎𝑙 is the phase difference between 𝐹𝑦 and 𝑦. 𝐹𝑣𝑜𝑟𝑡𝑒𝑥 is related
in a definite way to the vortex dynamics and to the convection of
vorticity which can be computed by 𝐹𝑣𝑜𝑟𝑡𝑒𝑥 = 𝐹𝑦 − 𝐹𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 with the
potential added mass force 𝐹 = −𝐶 𝑚 �̈�, where 𝐶 is the potential
𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑎 𝑑 𝑎
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Fig. 6. Time histories and normalised power spectral density (PSD) plots of the displacement and force coefficient in the transverse direction (𝑦∕𝐷 and 𝐶𝑦) for the nondimensional
plitter plate length 𝐿∗ = 2 and different reduced velocities (𝑉𝑟): (a) 𝑉𝑟 = 4, (b) 𝑉𝑟 = 15 and (c) 𝑉𝑟 = 24. In each subfigure, the upper plot includes the time histories of 𝑦∕𝐷 and
𝑦, the lower left plot presents the normalised PSD plot of 𝑦∕𝐷 and the normalised PSD plot of 𝐶𝑦 is depicted in the lower right plot; blue lines—𝑦∕𝐷 and red lines—𝐶𝑦.
Fig. 7. Vortex and total phases (𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and 𝜙𝑡𝑜𝑡𝑎𝑙) of the cylinder-plate assembly as functions of the reduced velocity (𝑉𝑟) for different nondimensional splitter plate length (𝐿∗)
values: (a) 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and (b) 𝜙𝑡𝑜𝑡𝑎𝑙 . Blue circles—𝐿∗ = 0, red squares—𝐿∗ = 0.25, black diamonds—𝐿∗ = 0.5, pink plus signs—𝐿∗ = 0.75, green upward-pointing triangles—𝐿∗ = 1, cyan
rosses—𝐿∗ = 1.5 and purple right-pointing triangles—𝐿∗ = 2.
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dded mass coefficient of the oscillating system. It was shown in the
revious studies [38,39] that the transition between the IB and upper
ranch (UB) involved a jump in 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and the transition between the
B and lower branch (LB) was associated with a jump in 𝜙𝑡𝑜𝑡𝑎𝑙. Fig. 7
resents 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and 𝜙𝑡𝑜𝑡𝑎𝑙 of the cylinder-plate assembly as functions
f 𝑉𝑟 for different 𝐿∗ values. For the plain cylinder, the VIV response
ransits to the UB at 𝑉𝑟 = 5 with 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 leaping to 180◦ and it
nters the LB when 𝑉𝑟 = 8 and 𝜙𝑡𝑜𝑡𝑎𝑙 increases to around 180◦. In the
esynchronisation range, both phases remain at 180◦. In the case of
∗ = 0.25, the transition between the IB and UB takes place in the

ange of 𝑉𝑟 = 5–9 and that between UB and LB occurs at 𝑉𝑟 = 11 and
2. For 𝐿∗ = 0.5, the IB persists up to 𝑉𝑟 = 16 and between 𝑉𝑟 = 19
nd 20, the response switches to the LB. The combined VIV-galloping
scillation pattern at 𝐿∗ = 0.75 features 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and 𝜙𝑡𝑜𝑡𝑎𝑙 being 0◦ within
he 𝑉𝑟 range considered in the present study. This indicates that the
ibration response transits from the IB directly to galloping. When 𝐿∗

s increased to 1, 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and 𝜙𝑡𝑜𝑡𝑎𝑙 experience 180◦ jumps at the onset
f the galloping branch, i.e., 𝑉𝑟 = 7 and they both immediately fall back
o 0◦, then 𝐹𝑣𝑜𝑟𝑡𝑒𝑥 and 𝐹𝑦 stay in phase with 𝑦. The variations of 𝜙𝑣𝑜𝑟𝑡𝑒𝑥
nd 𝜙𝑡𝑜𝑡𝑎𝑙 with 𝑉𝑟 are quite similar for 𝐿∗ = 1.5 and 2. Both 𝜙𝑣𝑜𝑟𝑡𝑒𝑥
nd 𝜙𝑡𝑜𝑡𝑎𝑙 increase from 0◦ to 180◦ in the LB, whereas there exists a
light increase in the 𝑉𝑟 where 𝜙𝑡𝑜𝑡𝑎𝑙 experiences the 0◦ to 180◦ jump.
he same trends as the 𝐿∗ = 1 case are observed for 𝐿∗ = 1.5 and 2
hat the transition from the WVIV to galloping is associated with the
80◦ to 0◦ drop in both 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and 𝜙𝑡𝑜𝑡𝑎𝑙. When the system is subject
o galloping, 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and 𝜙𝑡𝑜𝑡𝑎𝑙 maintain at 0◦ reflecting that 𝐹𝑣𝑜𝑟𝑡𝑒𝑥 and

are in phase with 𝑦.
8

𝑦 𝐶
.2. Hydrodynamic coefficients

Fig. 8 shows the variations of 𝐶𝑥, 𝐶 ′
𝑥 and 𝐶 ′

𝑦 with 𝑉𝑟 for different 𝐿∗

alues. It can be seen from Fig. 8(a) and (b) that the shapes of the 𝐶𝑥
nd 𝐶 ′

𝑥 curves for each 𝐿∗ are quite alike. In the VIV cases (𝐿∗ = 0, 0.25
and 0.5), 𝐶𝑥 and 𝐶 ′

𝑥 at the onset of the IB and in the desynchronisation
range are around their counterparts of the stationary system. The peaks
of 𝐶𝑥 and 𝐶 ′

𝑥 appear near the low ends of their lock-in ranges with
∗ = 0 and 0.25 at 𝑉𝑟 around 5 and 𝐿∗ = 0.5 at 𝑉𝑟 around 8. With the

increase in 𝐿∗, the peaks of 𝐶𝑥 and 𝐶 ′
𝑥 decrease. For combined VIV-

galloping at 𝐿∗ = 0.75, 𝐶𝑥 and 𝐶 ′
𝑥 first increase with 𝑉𝑟 and near the

kink, they decrease slightly and then level off. When the oscillations
are in the WVIV-galloping pattern, the first peaks of 𝐶𝑥 and 𝐶 ′

𝑥 are
associated with the peaks in the WVIV regime. Then, they both fall
and at the kinks, they start to increase and reach the plateaus. The
value of the 𝐶𝑥 plateau is lower for larger 𝐿∗, whereas the 𝐶 ′

𝑥 values
at high 𝑉𝑟 for 𝐿∗ = 0.75, 1, 1.5 and 2 almost collapse into a single
curve. Compared to the IL force coefficient curves, the 𝐶 ′

𝑦 curves for
ifferent 𝐿∗ values are more scattered. The 𝐶 ′

𝑦 values at the onset of
he VIV for 𝐿∗ = 0, 0.25 and 0.5 are around 0.2–0.3 and the peaks
re found at 𝑉𝑟 about 5 and 6. The peak of 𝐶 ′

𝑦 for the cylinder-plate
ssembly is significantly higher than that of the plain cylinder. 𝐶 ′

𝑦 of
he bare cylinder falls to around 0 at 𝑉𝑟 = 7 and then increases to
.2 in the desynchronisation branch. 𝐶 ′

𝑦 values of 𝐿∗ = 0.25 and 0.5
radually decrease to similar levels beyond their peak values and there
s a slight decrease in the desynchronised 𝐶 ′

𝑦 as 𝐿∗ is increased. The
′ ∗

𝑦 curve of 𝐿 = 0.75 rises at low 𝑉𝑟 and peaks at 𝑉𝑟 = 9. After that,
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Fig. 8. Variations of the mean and root mean square (RMS) values of the in-line force coefficient (𝐶𝑥 and 𝐶 ′
𝑥) and the RMS value of cross-flow force coefficient (𝐶 ′

𝑦) with the
reduced velocity (𝑉𝑟) for different nondimensional splitter plate length (𝐿∗) values: (a) 𝐶𝑥, (b) 𝐶 ′

𝑥 and (c) 𝐶 ′
𝑦. Blue circles—𝐿∗ = 0, red squares—𝐿∗ = 0.25, black diamonds—𝐿∗ = 0.5,

ink plus signs–𝐿∗ = 0.75, green upward-pointing triangles—𝐿∗ = 1, cyan crosses—𝐿∗ = 1.5 and purple right-pointing triangles—𝐿∗ = 2.
w
s

𝑒

t keeps on decreasing until the highest 𝑉𝑟 considered. In terms of the
VIV-galloping cases (𝐿∗ = 1, 1.5 and 2), a local peak of 𝐶 ′

𝑦 is found
o be associated with the first peak of 𝐴𝑦∕𝐷 and it subsequently drops
o 0. As 𝑉𝑟 is further increased, the second peak of 𝐶 ′

𝑦 is reached at
he beginning of the galloping branch. When the system is subject to
alloping, 𝐶 ′

𝑦 decreases with increasing 𝑉𝑟. In addition, the 𝐶 ′
𝑦 in the

alloping regime is larger for longer splitter plate length.
𝐹𝑦 of the cylinder-plate assembly can be expressed in terms of the

orce coefficient in phase with �̇� (the excitation coefficient 𝐶𝑒𝑦) and the
orce coefficient in phase with �̈� (the added mass coefficient 𝐶𝑎𝑦) as

𝑦 (𝑡) =
𝜌𝑈2

∞𝐷

2
√

2�̇�𝑟𝑚𝑠
𝐶𝑒𝑦�̇� (𝑡) −

𝜌𝜋𝐷2

4
𝐶𝑎𝑦�̈� (𝑡) (9)

where �̇�𝑟𝑚𝑠 is the RMS value of the CF velocity �̇� (𝑡).
The predicted vortex-induced force in the transverse direction 𝐹𝑝

can be given by

𝐹𝑝 (𝑡) =
𝜌𝑈2

∞𝐷

2
√

2�̇�𝑟𝑚𝑠
𝐶𝑒𝑦�̇� (𝑡) −

𝜌𝜋𝐷2

4
𝐶𝑎𝑦�̈� (𝑡) (10)

The least squares method as used by Song et al. [56] and Xu et al. [57]
is adopted to derive the two hydrodynamic coefficients by minimising
the sum of the squared error between 𝐹𝑝 and 𝐹𝑦 for a certain interval
of time, which can be expressed as

𝑒2 =
𝑁𝑠
∑

𝑖=1

[

𝐹𝑝
(

𝑡𝑖
)

− 𝐹𝑦
(

𝑡𝑖
)]2

=
𝑁𝑠
∑

𝑖=1

[

𝜌𝐷𝑈2
∞

2
√

2�̇�𝑟𝑚𝑠
𝐶𝑒𝑦�̇�

(

𝑡𝑖
)

−
𝜌𝜋𝐷2

4
𝐶𝑎𝑦�̈�

(

𝑡𝑖
)

− 𝐹𝑦
(

𝑡𝑖
)

]2

= min (11)
9

here 𝑁𝑠 is the total number of samples. Rearranging the right-hand
ide of Eq. (8) gives

2 =

(

𝜌𝑈2
∞𝐷

2
√

2�̇�𝑟𝑚𝑠

)2

𝐶2
𝑒𝑦

𝑁𝑠
∑

𝑖=1

[

�̇�
(

𝑡𝑖
)]2 −

𝜌2𝜋𝑈2
∞𝐷3

4
√

2�̇�𝑟𝑚𝑠
𝐶𝑒𝑦𝐶𝑎𝑦

𝑁𝑠
∑

𝑖=1

[

�̇�
(

𝑡𝑖
)

�̈�
(

𝑡𝑖
)]

−
𝜌𝑈2

∞𝐷
√

2�̇�𝑟𝑚𝑠
𝐶𝑒𝑦

𝑁𝑠
∑

𝑖=1

[

𝐹𝑦
(

𝑡𝑖
)

�̇�
(

𝑡𝑖
)]

+

(

𝜌𝜋𝐷2)2

16
𝐶2
𝑎𝑦

𝑁𝑠
∑

𝑖=1

[

�̈�
(

𝑡𝑖
)]2 +

𝜌𝜋𝐷2

2
𝐶𝑎𝑦

𝑁𝑠
∑

𝑖=1

[

𝐹𝑦
(

𝑡𝑖
)

�̈�
(

𝑡𝑖
)]

+
𝑁𝑠
∑

𝑖=1

[

𝐹𝑦
(

𝑡𝑖
)]2

(12)

It is assumed that 𝐺1 =
∑𝑁𝑠

𝑖=1
[

�̇�
(

𝑡𝑖
)]2, 𝐺2 =

∑𝑁𝑠
𝑖=1

[

�̇�
(

𝑡𝑖
)

�̈�
(

𝑡𝑖
)]

, 𝐺3 =
∑𝑁𝑠

𝑖=1
[

𝐹𝑦
(

𝑡𝑖
)

�̇�
(

𝑡𝑖
)]

, 𝐺4 =
∑𝑁𝑠

𝑖=1
[

�̈�
(

𝑡𝑖
)]2 𝐺5 =

∑𝑁𝑠
𝑖=1

[

𝐹𝑦
(

𝑡𝑖
)

�̈�
(

𝑡𝑖
)]

and
𝐺6 =

∑𝑁𝑠
𝑖=1

[

𝐹𝑦
(

𝑡𝑖
)]

.
Eq. (9) can be simplified as

𝑒2 =

(

𝜌𝑈2
∞𝐷

2
√

2�̇�𝑟𝑚𝑠

)2

𝐶2
𝑒𝑦𝐺1 −

𝜌2𝜋𝑈2
∞𝐷3

4
√

2�̇�𝑟𝑚𝑠
𝐶𝑒𝑦𝐶𝑎𝑦𝐺2 −

𝜌𝑈2
∞𝐷

√

2�̇�𝑟𝑚𝑠
𝐶𝑒𝑦𝐺3

+

(

𝜌𝜋𝐷2)2

16
𝐶2
𝑎𝑦𝐺4 +

𝜌𝜋𝐷2

2
𝐶𝑎𝑦𝐺5 + 𝐺6

(13)

Minimising 𝑒2 with respect to 𝐶𝑎𝑦 and 𝐶𝑒𝑦 by

𝜕𝑒2 = 0 𝜕𝑒2 = 0 (14)

𝜕𝐶𝑎𝑦 𝜕𝐶𝑒𝑦
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Fig. 9. Added mass and excitation coefficients in the cross-flow direction (𝐶𝑎𝑦 and 𝐶𝑒𝑦) as functions of the reduced velocity (𝑉𝑟) for different nondimensional splitter plate length
(𝐿∗) values: (a) 𝐶𝑎𝑦 and (b) 𝐶𝑒𝑦. Blue circles—𝐿∗ = 0, red squares—𝐿∗ = 0.25, black diamonds—𝐿∗ = 0.5, pink plus signs—𝐿∗ = 0.75, green upward-pointing triangles—𝐿∗ = 1, cyan
crosses—𝐿∗ = 1.5 and purple right-pointing triangles—𝐿∗ = 2.
Fig. 10. Vortex shedding modes of the nondimensional splitter plate length 𝐿∗ = 0 case at different reduced velocities (𝑉𝑟): (a) 𝑉𝑟 = 4, (b) 𝑉𝑟 = 5, (c) 𝑉𝑟 = 7 and (d) 𝑉𝑟 = 10. The
contours are the nondimensional spanwise vorticity component 𝜔𝑧.
Substituting Eq. (10) into Eq. (11) gives

1
2

(

𝜌𝑈2
∞𝐷

√

2�̇�𝑟𝑚𝑠

)2

𝐶𝑒𝑦𝐺1 −
𝜌2𝜋𝑈2

∞𝐷3

4
√

2�̇�𝑟𝑚𝑠
𝐶𝑎𝑦𝐺2 −

𝜌𝑈2
∞𝐷

√

2�̇�𝑟𝑚𝑠
𝐺3 = 0

−
𝜌2𝜋𝑈2

∞𝐷3

4
√

2�̇�𝑟𝑚𝑠
𝐶𝑒𝑦𝐺2 +

(

𝜌𝜋𝐷2)2

8
𝐶𝑎𝑦𝐺4 +

𝜌𝜋𝐷2

2
𝐺5 = 0

(15)

Solving Eq. (12), 𝐶𝑎𝑦 and 𝐶𝑒𝑦 can be calculated by

𝐶𝑒𝑦 =
2
√

2�̇�𝑟𝑚𝑠
𝜌𝑈2𝐷

𝐺2𝐺5 − 𝐺3𝐺4

𝐺2
2 − 𝐺1𝐺4

, 𝐶𝑎𝑦 =
4

𝜌𝜋𝐷2

𝐺1𝐺5 − 𝐺2𝐺3

𝐺2
2 − 𝐺1𝐺4

(16)

When a body is subject to FIV, 𝐶𝑎𝑦 and 𝐶𝑒𝑦 can vary signifi-
cantly [58,59]. 𝐶𝑎𝑦 plays a complex role in determining the natural
and oscillation frequencies of the system [60] while 𝐶𝑒𝑦 defines the
energy transfer between the fluid and the structure [61]. 𝐶𝑎𝑦 and 𝐶𝑒𝑦 as
functions of 𝑉𝑟 for different 𝐿∗ values are depicted in Fig. 9. As shown
in Fig. 9(a), the variation trends of the 𝐶𝑎𝑦 curves in the VIV cases
(𝐿∗ = 0, 0.25 and 0.5) generally agree with that in Wang et al. [38].
𝐶𝑎𝑦 decreases with the increase in 𝑉𝑟 before the lock-in range. When the
frequency synchronisation occurs, 𝐶𝑎𝑦 reaches a plateau. The cylinder-
plate assembly with a larger 𝐿∗ has a slightly higher plateau value and
this is also reflected by its lower 𝑓𝑜𝑦∕𝑓𝑛 in Fig. 4(b). There is a further
decrease in 𝐶𝑎𝑦 as the response enters the desychronisation branch and
the three curves almost coincide with each other having a negative
value when 𝑓𝑜𝑦∕𝑓𝑛 > 1, which was also observed by Srinil et al. [62].
The declination of 𝐶𝑎𝑦 for 𝐿∗ = 0.75 is relatively steep when 𝑉𝑟 = 2–
6. Beyond 𝑉𝑟 = 6, 𝐶𝑎𝑦 only varies in a small range of 3–7 although
the overall trend is still decreasing. As for 𝐿∗ = 1, 1.5 and 2, their 𝐶𝑎𝑦
values drop significantly in the WVIV region. The 𝐶𝑎𝑦 curves experience
abrupt leaps when galloping is initiated. In the galloping range, 𝐶
10

𝑎𝑦
decreases at much slower rates than those in the WVIV regime. Another
important feature of the galloping response is that its 𝐶𝑎𝑦 is always
greater than 0. As a consequence, the corresponding 𝑓𝑜𝑦∕𝑓𝑛 is lower
than 1. Fig. 9(b) demonstrates that 𝐶𝑒𝑦 in the zero damping system
is mostly negative indicating that the energy is dissipated through
the hydrodynamic damping. When the system is undergoing VIV, the
troughs of 𝐶𝑒𝑦 in the cases of 𝐿∗ = 0 and 0.25 appear at identical 𝑉𝑟 of 5.
That of 𝐿∗ = 0.5 is postponed to 𝑉𝑟 = 6 with its magnitude increasing
slightly. At the onset of VIV and in the desynchronisation range, 𝐶𝑒𝑦
approaches 0. Negative 𝐶𝑒𝑦 values are also observed for the combined
VIV-galloping case and the WVIV-galloping cases with zero damping.
The troughs in their 𝐶𝑒𝑦 curves are associated with the kinks in the
response curves and the magnitudes of the troughs are larger than those
of 𝐿∗ = 0 and 0.25.

4.3. Wake patterns

In order to reveal the underlying mechanisms of certain FIV be-
haviours, the wake patterns behind the cylinder-plate assembly at dif-
ferent 𝑉𝑟 values are analysed by plotting the nondimensional spanwise
vorticity contours which is defined as 𝜔𝑧 = (𝜕𝑣∕𝜕𝑥 − 𝜕𝑢∕𝜕𝑦) ∕

(

𝑈∞∕𝐷
)

.
It can be seen from Fig. 10 that the plain cylinder possesses typical low
𝑅𝑒 VIV wake patterns analogous to those in Bao et al. [41] and Wang
et al. [38]. The vortex shedding of the 𝐿∗ = 0 case demonstrates a 2S
mode (two single vortices are shed per vibration cycle). At the onset
of the IB, a single-row vortex street similar to the Kármán vortex street
is observed. With the increase in 𝐴𝑦∕𝐷, the wake changes to a double-
row configuration. As the response enters the LB around 𝑉𝑟 = 7, the
vortex street returns to a single row. In the desynchronisation branch,
the wake width further reduces. When 𝐿∗ is increased to 0.25, a 2S
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Fig. 11. Vortex shedding modes of the nondimensional splitter plate length 𝐿∗ = 0.25 case at different reduced velocities (𝑉𝑟): (a) 𝑉𝑟 = 4, (b) 𝑉𝑟 = 7, (c) 𝑉𝑟 = 11 and (d) 𝑉𝑟 = 14.
The contours are the nondimensional spanwise vorticity component 𝜔𝑧.
Fig. 12. Vortex shedding modes of the nondimensional splitter plate length 𝐿∗ = 0.5 case at different reduced velocities (𝑉𝑟): (a) 𝑉𝑟 = 5, (b) 𝑉𝑟 = 13, (c) 𝑉𝑟 = 17 and (d) 𝑉𝑟 = 21.
The contours are the nondimensional spanwise vorticity component 𝜔𝑧.
Fig. 13. Vortex shedding modes of the nondimensional splitter plate length 𝐿∗ = 0.75 case at different reduced velocities (𝑉𝑟): (a) 𝑉𝑟 = 4, (b) 𝑉𝑟 = 10, (c) 𝑉𝑟 = 16 and (d) 𝑉𝑟 = 24.
The contours are the nondimensional spanwise vorticity component 𝜔𝑧.
vortex shedding mode (two single vortices are shed per vibration cycle)
is witnessed at low 𝑉𝑟. The vortices are elongated with the width of the
vortex street broadened as 𝑉𝑟 is increased to 7. Fig. 11(b) also shows
that the shear layers separated from the cylinder surface reattach onto
the splitter plate. A 2P vortex shedding mode (two pairs of vortices are
shed per vibration cycle) first reported by Brika and Laneville [63,64]
is found to be accompanied by shear layer reattachment at 𝑉𝑟 = 11. It
is thought that the lower 𝑓𝑜𝑦∕𝑓𝑛 in the lock-in range of the cylinder-
plate assembly in Fig. 4(b) can be attributed to the reattachment of
the shear layers. In the desynchronisation branch, the vortex shedding
becomes a 2S mode with one single vortex street. For 𝐿∗ = 0.5 in
Fig. 12, similar to the 𝐿∗ = 0.25 case, a single-row vortex street is
observed at the onset and in the desynchronisation range of VIV with no
evident shear layer reattachment. The shear layers apparently reattach
onto the surface of the splitter plate in Fig. 12(b) and (c). The vortex
shedding is in a 2P mode at 𝑉𝑟 = 13. In the transition region of the
IB and LB at 𝑉𝑟 = 17, the wake pattern accords with a 2T mode in
which two triplets of vortices are shed per vibration cycle. The 2T
vortex shedding mode was observed by Jauvtis and Williamson [65]
11
for the super upper branch of the two-degree-of-freedom (2DOF) VIV
of a low-mass-damping cylinder. It has also been reported for the VIV
of a circular cylinder [66–68] and for the FIV of prisms with other
cross-sectional shapes [69,70].

When the cylinder-plate system with 𝐿∗ = 0.75 is subject to com-
bined VIV-galloping response, a single-row vortex street is found at 𝑉𝑟 =
4 in Fig. 13(a). The wake pattern at 𝑉𝑟 = 10 is a 2P mode and it changes
to a 2T mode around the kink. The 2P and 2T vortex shedding modes
in Fig. 13 are qualitatively similar to those in Fig. 12. The wake mode
at 𝑉𝑟 = 24 in Fig. 12(d) is more complicated than the other three 𝑉𝑟
values. It can be seen from this subfigure that four pairs of vortices are
formed and shed sequentially from the cylinder-plate assembly in one
vibration cycle. This vortex shedding pattern is consequently named as
a 4P mode following the convention of Williamson and Roshko [71].
The larger vibration amplitude and lower oscillation frequency of the
system in the galloping branch give rise to the multi-vortex wake mode.
In Fig. 13, the reattachment of the separated shear layers is found to
be associated with the galloping response and it is known to drive the
oscillation of the body as discussed by Assi and Bearman [30], Sun et al.
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Fig. 14. Vortex shedding modes of the nondimensional splitter plate length 𝐿∗ = 1 case at different reduced velocities (𝑉𝑟): (a) 𝑉𝑟 = 6, (b) 𝑉𝑟 = 8 and (c) 𝑉𝑟 = 14. The contours
are the nondimensional spanwise vorticity component 𝜔𝑧.
Fig. 15. Vortex evolution of the nondimensional splitter plate length 𝐿∗ = 1 case for the reduced velocity 𝑉𝑟 = 24 at different time instants in one oscillation cycle: (a) 𝑡 = 0𝑇𝑜𝑦,
(b) 𝑡 = 𝑇𝑜𝑦∕5, (c) 𝑡 = 2𝑇𝑜𝑦∕5, (d) 𝑡 = 3𝑇𝑜𝑦∕5 and (e) 𝑡 = 4𝑇𝑜𝑦∕5. The contours are the nondimensional spanwise vorticity component 𝜔𝑧.
Fig. 16. Vortex shedding modes of the nondimensional splitter plate length 𝐿∗ = 1.5 case at different reduced velocities (𝑉𝑟): (a) 𝑉𝑟 = 4, (b) 𝑉𝑟 = 7 and (c) 𝑉𝑟 = 11. The contours
are the nondimensional spanwise vorticity component 𝜔𝑧.
Fig. 17. Vortex shedding mode of the nondimensional splitter plate length 𝐿∗ = 2 case at the reduced velocity 𝑉𝑟 = 4: (a) wake structure and (b) close-up of the vorticity field
around the cylinder-plate assembly. The contours are the nondimensional spanwise vorticity component 𝜔𝑧.
[24,28]. In terms of the 𝐿∗ = 1 case in Fig. 14, the vortex shedding
associated with the VIV peak at 𝑉𝑟 = 6 is in a 2S mode because of
the relatively small 𝐴𝑦∕𝐷. At the low end of the galloping branch, the
wake pattern changes to a 2P mode at 𝑉𝑟 = 8 in Fig. 14(b). Similar to
the 𝐿∗ = 0.75 configuration, a 2T vortex shedding mode appears around
the kink at 𝑉𝑟 = 14. As for 𝑉𝑟 = 24, a 5P wake mode is observed with five
pairs of vortices shed per oscillation cycle as depicted by the evolution
of vortices at different time instants in Fig. 15. When 𝐿∗ is increased to
1.5, as demonstrated in Fig. 16, the wake patterns in the WVIV region
are in a 2S mode. The vortex formation length 𝐿𝑓 , represented by
the distance from the COG of the cylinder-plate system to the location
where the vortices develop and are shed [72–74], becomes smaller with
the increase in 𝐴𝑦∕𝐷. Unlike the 𝐿∗ = 1 case, the vortex shedding at
the onset of the galloping branch changes to a 2T mode. The vortex
shedding at the high end of the galloping branch is mostly analogous
to the 𝐿∗ = 1 case, i.e., a 5P wake mode. For the largest 𝐿∗ considered
in the present study, the vorticity contours at the VIV peak in Fig. 17
show that apart from the primary vortex shedding in a 2S mode, evident
shear layer reattachment is observed at the tip of the splitter plate.
Moreover, secondary vortices are formed along the upper and lower
surfaces of the splitter plate. The appearance of secondary vortices was
also reported by Kwon and Choi [4]. The shear layer reattachment and
the secondary vortices are not observed for the VIV peaks in the other
12
two WVIV-galloping scenarios. The appearance of the VIV peak at lower
𝑉𝑟 with a larger 𝐴𝑦∕𝐷 can be possibly attributed to the competitions
among the shear layer reattachment, primary and secondary vortex
shedding. The vortex shedding at the onset of galloping of the 𝐿∗ = 2
case in Fig. 18 turns out to be a 4P mode with four pairs of vortices shed
in each vibration cycle. At the high end of 𝑉𝑟, an additional vortex pair
is formed and shed compared to its counterparts in the 𝐿∗ = 1 and 1.5
cases constituting a 6P wake pattern as there are six pairs of vortices
shed per oscillation cycle as demonstrated in Fig. 19. A summary of
the vortex shedding patterns at different 𝑉𝑟 values for each of the 𝐿∗

considered in this study are provided in Table 3. When 𝐿∗ = 0–0.5
where the system is undergoing pure VIV, the increase in 𝐴𝑦∕𝐷 with
increasing 𝐿∗ leads to the 2P mode in the UB of 𝐿∗ = 0.25 as well as
the 2P and 2T modes in the IB and UB of 𝐿∗ = 0.5. For the combined
VIV-galloping and WVIV-galloping responses (𝐿∗ = 0.75–2), the vortex
shedding in the VIV region remains to be the 2S mode. The longer the
splitter plate is, the wider the VIV desynchronisation branch becomes
and the higher 𝑉𝑟 the 2S pattern persists to. The low-frequency but
large-amplitude oscillations in the galloping branch give rise to multi-
vortex wake patterns. The kink in the galloping response is associated
with a switch in the wake modes and more vortices are shed in each
vibration cycle with the increase in 𝐿∗. A wake mode consists of up
to six pairs of vortices in each oscillation cycle is identified within the
present parameter space.
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Fig. 18. Vortex evolution of the nondimensional splitter plate length 𝐿∗ = 2 case for the reduced velocity 𝑉𝑟 = 15 at different time instants in one oscillation cycle: (a) 𝑡 = 𝑇𝑜𝑦∕8,
(b) 𝑡 = 3𝑇𝑜𝑦∕8, (c) 𝑡 = 5𝑇𝑜𝑦∕8 and (d) 7𝑇𝑜𝑦∕8. The contours are the nondimensional spanwise vorticity component 𝜔𝑧.
Fig. 19. Vortex evolution of the nondimensional splitter plate length 𝐿∗ = 2 case for the reduced velocity 𝑉𝑟 = 24 at different time instants in one oscillation cycle: (a) 𝑡 = 𝑇𝑜𝑦∕7,
(b) 𝑡 = 2𝑇𝑜𝑦∕7, (c) 𝑡 = 3𝑇𝑜𝑦∕7, (d) 9𝑇𝑜𝑦∕14, (e) 11𝑇𝑜𝑦∕14 and (f) 13𝑇𝑜𝑦∕14. The contours are the nondimensional spanwise vorticity component 𝜔𝑧.
.
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Table 3
Summary of vortex shedding modes in all the cases considered in the present research

𝑉𝑟

𝐿∗
0 0.25 0.5 0.75 1 1.5 2

2 2S 2S 2S 2S 2S 2S 2S
3 2S 2S 2S 2S 2S 2S 2S
4 2S 2S 2S 2S 2S 2S 2S
5 2S 2S 2S 2S 2S 2S 2S
6 2S 2S 2S 2S 2S 2S 2S
7 2S 2S 2S 2S 2S 2S 2S
8 2S 2S 2S 2P 2P 2S 2S
9 2S 2S 2S 2P 2P 2S 2S
10 2S 2P 2P 2P 2P 2S 2S
11 2S 2P 2P 2P 2P 2T 2S
12 2S 2S 2P 2P 2P 2T 2S
13 2S 2S 2P 2P 2T 2T 2S
14 2S 2S 2P 2T 2T 2T 2S
15 2S 2S 2T 2T 2T 2T 4P
16 2S 2S 2T 2T 2T 2T 4P
17 2S 2S 2T 2T 2T 4P 5P
18 2S 2S 2T 2T 2T 4P 5P
19 2S 2S 2S 2T 2T 4P 5P
20 2S 2S 2S 2T 4P 5P 5P
21 2S 2S 2S 2T 4P 5P 5P
22 2S 2S 2S 4P 5P 5P 5P
23 2S 2S 2S 4P 5P 5P 6P
24 2S 2S 2S 4P 5P 5P 6P
25 2S 2S 2S 4P 5P 5P 6P
26 2S 2S 2S 5P 5P 6P 6P

. Conclusions

The effect of 𝐿∗ on the FIV of a cylinder-plate assembly with mass
atio 𝑚∗ = 10 and damping ratio 𝜁 = 0 is numerically investigated at
𝑒 = 100. Seven different 𝐿∗ values covering the range of 0–2 are
onsidered and 𝑉 is varied systematically from 2 to 26. Important
13

𝑟

aspects of FIV such as the amplitude and frequency responses, vortex
and total phases, hydrodynamic coefficients and wake patterns are
analysed. The main conclusions of this paper are as follows:

Three different response patterns are observed, i.e., VIV (𝐿∗ = 0–
0.5), combined VIV-galloping (𝐿∗ = 0.75) and WVIV-galloping (𝐿∗ = 1,
1.5 and 2). When the cylinder-plate system is subject to VIV, 𝐴𝑦∕𝐷
increases and the onset of lock-in is slightly delayed with wider lock-in
range as 𝐿∗ is increased. For combined VIV-galloping and WVIV-
galloping, the onset of galloping is associated with a drop in 𝑓𝑜𝑦∕𝑓𝑛.
A kink attributed to the third harmonic component in 𝐹𝑦 is found in
the galloping branch which gradually disappears with increasing 𝐿∗.
In the cases of the VIV response, the transitions from the IB to UB
and UB to LB are linked to the jumps in 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and 𝜙𝑡𝑜𝑡𝑎𝑙, respectively.
The combined VIV-galloping features 𝜙𝑣𝑜𝑟𝑡𝑒𝑥 = 𝜙𝑡𝑜𝑡𝑎𝑙 = 0◦ throughout
the 𝑉𝑟 range considered, indicating the direct transition from the IB
to galloping branch. Whereas, for the WVIV-galloping response, both
𝜙𝑣𝑜𝑟𝑡𝑒𝑥 and 𝜙𝑡𝑜𝑡𝑎𝑙 jump to 180◦ in the LB and fall back to 0◦ at the onset
of galloping. Once the system is undergoing galloping, 𝐹𝑣𝑜𝑟𝑡𝑒𝑥 and 𝐹𝑦
are in phase with 𝑦∕𝐷.

The peaks of 𝐶𝑥 and 𝐶 ′
𝑥 appear near the low ends of the VIV lock-

n regions and their values decrease with increasing 𝐿∗. For combined
IV-galloping, 𝐶𝑥 and 𝐶 ′

𝑥 increase with 𝑉𝑟, then experience slight
ecreases around the kink and eventually remain constant. In terms
f WVIV-galloping, the first peaks of 𝐶𝑥 and 𝐶 ′

𝑥 take place in the
VIV regime. They start to increase on the initiation of galloping

nd reach the plateaus at the kinks. 𝐶 ′
𝑦 value becomes higher and the

ppearance of the peak 𝐶 ′
𝑦 value is postponed to higher 𝑉𝑟 as 𝐿∗ is

ncreased. When the system is undergoing VIV, 𝐶𝑎𝑦 decreases as 𝑉𝑟 is
ncreased before the frequency synchronisation and reaches a plateau
n the lock-in range. A higher plateau value is found for longer 𝐿∗

nd 𝐶𝑎𝑦 further reduces in the desynchronisation branch. 𝐶𝑎𝑦 of the
ombined VIV-galloping response keeps a decreasing trend. As for the
VIV-galloping pattern, 𝐶 drops significantly in the WVIV region and
𝑎𝑦
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then leaps at the onset of galloping. Overall, positive 𝐶𝑎𝑦 is observed
in the galloping branch. 𝐶𝑒𝑦 is mostly negative for the zero-damping
system. The troughs of 𝐶𝑒𝑦 in the VIV cases appear around the low ends
of the lock-in ranges. Whereas, they are found to be associated with the
kinks in the combined VIV-galloping and WVIV-galloping scenarios.

The wake patterns of the oscillating cylinder-plate assembly are
more complicated than those of the plain cylinder. The 2S mode is the
most common wake pattern for the VIV response of the system. As 𝐿∗

s increased, the corresponding increase in 𝐴𝑦∕𝐷 in the lock-in range
rings about the 2P and 2T vortex shedding modes together with the
eattachment of the shear layers. For the largest 𝐿∗ considered, com-
etitions among the shear layer reattachment, primary and secondary
ortex shedding are found at the VIV peak. The occurrence of the multi-
ortex wake modes in the galloping branch can be attributed to the
arge-amplitude oscillations at low frequencies. The vortex shedding
ode changes in reflection of the kink in the galloping response. It is

evealed that the shear layer reattachment phenomenon starts to appear
t lower 𝑉𝑟 values and the number of vortex pairs in one galloping
ycle increases with enlarged 𝐿∗. In terms of the future research,
ore experimental and numerical efforts are necessary to study the

ffects of 𝑚∗, 𝜁 and 𝑅𝑒 on the FIV characteristics of a cylinder-plate
system in detail. The energy conversion characteristics of a cylinder-
plate assembly when it is subject to the FIV can also be investigated to
assess the feasibility of using such a device to harness the hydrokinetic
energy.
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