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a b s t r a c t

The two-degree-of-freedom (2DOF) vortex-induced vibration (VIV) of a circular cylinder
with varying in-line to cross-flow natural frequency ratios (f ∗

= fnx/fny) is studied
using a three-dimensional (3D) computational fluid dynamics (CFD) approach. Numerical
simulation is carried out for a constantmass ratio of 2 at a fixedReynolds number Re = 500.
The reduced velocity ranges from 2 to 12. Three natural frequency ratios are considered,
i.e., f ∗

= 1, 1.5 and 2. The structural damping is set to zero tomaximise the response of the
cylinder. The main objective of this study is to investigate the effect of f ∗ on the 2DOF VIV
responses and the 3D characteristics of the flow. It is discovered that there is a significant
increase in the vibration amplitude, and the peak amplitude shifts to a higher reduced
velocity when f ∗ increases from 1 to 2. A single-peak cross-flow response is observed for
the identical in-line and cross-flow mass ratios when f ∗

= 2. Dual resonance is found to
exist over the range of f ∗ studied. The preferable trajectories of the cylinder in the lock-
in range are counterclockwise figure-eight orbits. Oblique figure-eight trajectories appear
at Vr = 6, 7 and 8 when f ∗

= 1. The third harmonic component which is observed in
the lift fluctuation increases with f ∗. The correlation decreases in the lock-in range and
reaches itsminimumvalue around the transition region between the lock-in and post-lock-
in ranges. Three vortex sheddingmodes (2S, P+ S and 2P) appear in the present simulation.
A dominant P + S mode is associated with the oblique figure-eight trajectories. Variation
of vortex shedding flows along the cylinder is observed leading to the poor correlation of
the sectional lift forces.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Vortex-induced vibration (VIV) of cylindrical structures is a common phenomenon in many engineering applications.
Due to its significance, VIV has been extensively studied in recent years. Comprehensive reviews of various aspects of
VIV can be found in the publications of Blevins (1977), Williamson and Govardhan (2004), Gabbai and Benaroya (2005),
Sumer and Fredsøe (2006), Bearman (2011) and Païdoussis et al. (2014). The preponderance of existing publications have
focused on one-degree-of-freedom (1DOF) cross-flow VIV of a circular cylinder (Facchinetti et al., 2004; Farshidianfar and
Zanganeh, 2010; Govardhan and Williamson, 2000; Khalak and Williamson, 1999; Sarpkaya, 1995). Nevertheless, several
recent experimental studies have revealed the significant effect of the in-line degree of freedom on the VIV response
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especially when the mass ratio m∗
= m/(ρπD2L/4) is less than 6 (Blevins and Coughran, 2009; Dahl et al., 2006, 2007,

2010; Jauvtis and Williamson, 2004). Furthermore, studies by Vandiver and Jong (1987), Tognarelli et al. (2004) and Wang
and Xiao (2016) have proven that the in-line VIV can contribute asmuch, or even higher, fatigue damage than the cross-flow
VIV to the structures because of the doubled oscillation frequency. Therefore, the number of studies being conducted on
two-degree-of-freedom (2DOF) VIV continues to grow (Bai and Qin, 2014; Kang and Jia, 2013; Srinil and Zanganeh, 2012;
Srinil et al., 2013; Wu et al., 2016; Zanganeh and Srinil, 2014).

Apart from experiments and semi-empirical modelling, there have been an increasing number of studies on VIV based
on the computational fluid dynamics (CFD) tools. The greater part of previous CFD studies on the VIV of a circular cylinder
were conducted using two-dimensional (2D) models. Guilmineau and Queutey (2004) presented their simulation results
of 1DOF VIV of a circular cylinder, the response of which was well captured in the initial and lower branches. However,
the response in the upper branch did not correspond with the experimental results. Singh and Mittal (2005) studied the
hysteresis behaviour of 2DOF VIV response of a circular cylinder at low Reynolds numbers (Re). In their study, hysteresis
was observed at both the low- and high-ends of the lock-in range and they also observed the P + S vortex shedding mode
in free vibration for the first time. Leontini et al. (2006) investigated the branching behaviour of 1DOF VIV at Re = 200. Two
response branches similar to the upper and lower branches at higher Re were discovered in their numerical study. The 2D
and 3D flow behaviourswere also ascertained to have similaritieswhich suggested that the 3D flow branching behaviour has
its genesis in the 2D flow. Lucor and Triantafyllou (2008) performed 2D simulation of 2DOFVIV of a circular cylinder in awide
range of in-line to cross-flow natural frequency ratios (f ∗

= fnx/fny). They observed that the vibration amplitude increases
and the peak amplitude shifts to a higher reduced velocity (Vr = V/fnyD) as f ∗ increases. Zhao and Cheng (2011) simulated
2DOF VIV of a circular cylinder by solving the 2D Reynolds-averaged Navier–Stokes (RANS) equations and reproduced the
2T vortex shedding mode (two triplets of vortices are formed per cycle) and the response in the super-upper branch.

It was found that the flow in thewake of a circular cylinder is three-dimensional (3D)when the Reynolds number exceeds
200 (Williamson, 1988, 1989). Therefore, a series of 3D CFD studies on VIV of a circular cylinder have been conducted. Lucor
et al. (2005) presented results of a direct numerical simulation (DNS) of 1DOFVIV and found that there existed a sharp drop in
the spanwise correlation of the wake and forces in the region of Vr around themode transition between the upper and lower
branches. Pontaza and Chen (2006) employed large eddy simulation (LES) and overset (Chimera) grids to study 2DOF VIV of
a circular cylinder with low structural mass and damping at Vr = 6 and Re = 105. A response characterised by a figure-eight
patternwas observed and the vortex shedding exhibited a 2Smode. Saltara et al. (2011) used detached eddy simulation (DES)
to simulate 1DOF VIV of a circular cylinder with a low mass-damping parameter at Re = 104. In general, their simulation
results agreed with the experimental results of Khalak and Williamson (1997), however the vibration amplitudes and force
coefficients were overpredicted for Vr >6. Kondo (2012), who examined the different excitation mechanisms in the in-line
and cross-flow directions based on the numerical results from a 3D computation, captured the first and second excited
vibrations of the in-line direction in the Vr range of Vr = 1.7–3.5 with a low Scruton number (Sc = 4πmζ/(ρD2L), where ζ

is the structural damping ratio). Navrose and Mittal (2013) investigated the transition of responses of 2DOF VIV in the three
branches and noted that the cylinder responses and force coefficients exhibited beats in the initial branch. The initial-upper
branch transition was found to be hysteretic and intermittency was observed in the transition between the upper and lower
branches. Zhao et al. (2014) studied the transition from 2D to 3D for 1DOF VIV of a circular cylinder. In their study, the three-
dimensionality of the flow appeared to be strongest in the upper branch and weakest in the initial branch. Additionally, the
2S and 2P vortex shedding modes were acknowledged as coexisting in the upper branch which led to the strong variation
of the lift coefficient along the span. Gsell et al. (2016) simulated 2DOF VIV of a circular cylinder at Re = 3900 with direct
numerical simulation of the 3D Navier–Stokes equations. The predicted structural responses and forces were consistent
with the experimental results reported by Jauvtis andWilliamson (2004). The numerical results of this study confirmed the
large-amplitude VIV and the shape of the responses. The in-line to cross-flow oscillation frequency ratio was equal to 2 and
it was also found that the phase difference between the in-line and cross-flow motions varied across the lock-in range.

Themost common scenario for 2DOF VIV is that the in-line and cross-flow natural frequencies are identical (i.e., fnx = fny).
However, it has been previously stressed that cylindrical offshore structures, such as risers, mooring lines and pipelines
usually possess an infinite number of natural frequencies in different directions (Srinil et al., 2007; Srinil and Rega, 2007).
Therefore, it is of practical interest to study 2DOF VIV with varying f ∗; particularly, when f ∗

= 2, where perfect 2DOF
resonance may occur due to the fact that the fluctuating drag oscillates at a frequency twice that of the fluctuating lift.
Sarpkaya (1995) and Dahl et al. (2006) observed two-peak cross-flow responses with unequal mass ratios in the in-line and
cross-flow directions (m∗

x ̸= m∗
y) and f ∗ around 2. The orbital trajectories and dual resonance of 2DOF VIV of a circular

cylinder with varying f ∗ were further investigated by Dahl et al. (2010) in subcritical and supercritical Reynolds number
ranges. Under dual resonance, the in-line to cross-flow oscillation frequency ratio was found to be fox/foy ≈ 2 and a third
harmonic component was observed in the lift force. A more practical case with m∗

x = m∗
y and varying f ∗ has also been

investigated. Srinil et al. (2013) experimentally and numerically studied the 2DOF VIV of a circular cylinder with low mass-
damping and varying f ∗. In their study, figure-eight orbital motions were observed for a wide range of Vr values indicating
the occurrence of dual resonance. A flattened single-peak upper branch similar to the experimental results of Assi et al.
(2009) was observed when f ∗ approaches 2 in their study. Bao et al. (2012) performed a 2D CFD simulation of the 2DOF VIV
of a circular cylinder withm∗

x = m∗
y and varying f ∗ at Re = 150. They indicated that dual resonance existed over a wide range

of f ∗. A third harmonic frequency component was also observed in the lift fluctuation. Multiple small peaks occurred in the
cross-flow response amplitudes of the cylinder when f ∗

= 2.
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Overall, 1DOF VIV of a circular cylinder has been widely studied during the past few decades. There have also been a
number of studies on 2DOF VIV of a circular cylinder; however, most of these focused predominantly on the case of fnx = fny
with less attention paid to the more practical case with varying f ∗. Existing experimental and numerical investigations on
the 2DOF VIV of a circular cylinder with varying f ∗ were devoted to the response of the cylinder and 2D flow behaviour.
Fully 3D CFD simulations of the 2DOF VIV of a circular cylinder with varying f ∗, which provide detailed information about
the transient 3D wake structures, are still quite limited.

In this study, a 3D numerical simulation of the 2DOF VIV of an elastically mounted circular cylinder with mass ratio
m∗

= 2, length-to-diameter ratio L/D = 12 and varying f ∗ at Re = 500 is conducted. The cylinder is free to vibrate in both
the in-line and cross-flow directions. The main objective of the present work is to numerically study a 3D circular cylinder
with varying f ∗ undergoing 2DOF VIV within an early subcritical Re regime. Besides the 2DOF VIV responses, there is also a
particular focus on aspects such as the correlation lengths and the 3D wake structures which have not been fully addressed
by previous studies. It is expected that the 3D CFD modelling could provide more detailed insights into the mechanism of
2DOF VIV.

The arrangement of the paper is as follows. The numerical methods are given in Section 2 and a detailed description of
the problem is provided in Section 3. The results and discussions are presented in Section 4 and the conclusions are outlined
under Section 5.

2. Numerical methods

2.1. Flow model

The governing equations for the flow are the 3D unsteady incompressible Navier–Stokes equations. The Arbitrary
Lagrangian–Eulerian (ALE) scheme is adopted to solve the governing equations in amovingmesh system. The Navier–Stokes
equations in the ALE scheme are expressed as

∂ui

∂xi
= 0 (1)

∂ui

∂t
+

(
uj − ûj

) ∂ui

∂xj
= −

1
ρ

∂p
∂xi

+ ν
∂2ui

∂x2j
(2)

where xi (x1 = x, x2 = y, x3 = z) represents the Cartesian coordinate, ui is the fluid velocity component in the xi-direction, t
is the time, ûi is the grid velocity component in the xi-direction, ρ is the fluid density, p is the pressure and ν is the kinematic
viscosity of the fluid.

The flow field is simulated using the commercial software package ANSYS CFX (version 15.0) (ANSYS Inc., 2013). The
governing equations are discretised using an element-based finite volume method (FVM). Rhie–Chow interpolation is used
to obtain the pressure–velocity coupling on collocated grids. A second-order backward Euler scheme is adopted for the
temporal discretisation and a high resolution scheme is used as the convective scheme.

2.2. Structural model

According to Zhao and Cheng (2011), the 2DOF motion of an elastically mounted circular cylinder can be described as

miẍi + ciẋi + Kixi = Fi (3)

where x1 = x and x2 = y are the cylinder displacements in the x- and y-directions, respectively. mi, ci, Ki and Fi are the
mass, damping coefficient, structural stiffness and hydrodynamic force in the xi-direction, respectively. In this study, the
mass is assumed to be identical in the in-line and cross-flow directions, i.e., m1 = m2 = m and the damping coefficients
in the in-line and cross-flow directions are set to zero. Eq. (3) is integrated by using a Newmark integration scheme with a
second-order accuracy (Hughes, 1987). The method relates displacements, velocities and accelerations from time step n to
n + 1:

ẋn+1
i = ẋni + ∆t

[
(1 − γ ) ẍni + γ ẍn+1

i

]
(4)

xn+1
i = xni + ∆tẋni +

∆t2

2

[
(1 − 2β) ẍni + 2β ẍn+1

i

]
(5)

where xi is the displacement in the xi-direction, a dot denotes differentiation with respect to time and the superscripts
represent the corresponding time step. ∆t is the time-step size. β and γ are two real parameters which are directly linked
to the accuracy and stability of the scheme. In the present simulation, β = 1/4 and γ = 1/2 are chosen. The choice of the
parameters corresponds to a trapezoidal rule with a second-order accuracy and unconditional stability.
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Eqs. (4) and (5) can be rewritten as

ẍn+1
i =

1
β∆t2

(
xn+1
i − xni

)
−

1
β∆t

ẋni −

(
1 −

1
2β

)
ẍni (6)

ẋn+1
i =

γ

β∆t

(
xn+1
i − xni

)
−

(
γ

β
− 1

)
ẋni −

(
γ

2β
− 1

)
∆tẍni . (7)

The displacement in the xi-direction at time step n + 1 can be expressed as

xn+1
i =

Fi + mi

[
1

β∆t2
xni +

1
γ∆t

ẋni +

(
1 −

1
2β

)
ẍni

]
+ ci

[
γ

β∆t
xni +

(
γ

β
− 1

)
ẋni +

(
γ

2β
− 1

)
∆tẍni

]
(

1
β∆t2

mi +
γ

β∆t
ci + Ki

) . (8)

2.3. Mesh deformation

To accommodate the motion of the cylinder, the displacement diffusion model (Wang and Xiao, 2016; Zhao and Cheng,
2011) for mesh motion is adopted. The displacements of the mesh points are calculated based on the following equation:

∇ · (Γ ∇Si) = 0 (9)

where Si represents the displacements of the nodal points in the xi-direction,Γ is themesh stiffness. Our previous numerical
simulation (Wang and Xiao, 2016) showed that Γ = 1/∀2 with ∀ being the control volume size could lead to satisfactory
results.

2.4. Fluid–structure interaction

This classical fluid–structure interaction problem can be solved using a staggered algorithm, i.e., the flow field and the
dynamic response of the structure are solved successively at a given time step (Placzek et al., 2009). The simulation within
each time step is initiated by solving the Navier–Stokes equations to obtain the forces on the cylinder. Then the forces are
transferred to the structural dynamic model to obtain the displacements of the cylinder. The new mesh configuration is
evaluated based on the displacements of the cylinder using Eq. (9) and the Navier–Stokes equations are solved on the new
mesh configuration. Such a fluid–structure interaction loop is repeated during each time step of the simulation.

3. Problem descriptions

3.1. Simulation parameters

In the present study, 3D numerical simulation is conducted for an elastically mounted circular cylinder with diameter D
and length L. The Reynolds number is defined as Re = VD/ν and a constant Reynolds number Re = 500 is adopted in the
simulation. The choice of Re stems from several important considerations. First, at Re = 500, the flow around the cylinder is
3D and it can be modelled by directly solving the 3D Navier–Stokes equations with affordable computational efforts which
also avoids the potential uncertainties that might be introduced by the utilisation of turbulence models. Second, the flow
structures at low Re are more regular than those at high Re which is good for analysing the detailed wake structures and the
three-dimensionality of the flow. More importantly, previous studies by Bao et al. (2012) and Leontini et al. (2006) revealed
that VIV of rigid structures at low Re share comparable response features to that at high Re. Studies on 2DOF VIV at low Re
are also of fundamental research interest from a flow physics point of view.

Batcho and Karniadakis (1991) studied the flow past a circular cylinder at Re = 500 with length-to-diameter ratios (L/D)
of π and 2π and obtained sufficiently accurate results of the force coefficients. The L/D = 8 and 12 were used in the 3D
simulation of the flow around two circular cylinders in tandem at Re ≤ 500 by Carmo et al. (2010); in the present study,
the L/D is also set to 12. It is expected that this spanwise length is large enough to capture the three-dimensionality of the
flow at Re = 500. Furthermore, this L/D is also comparable to those used in some recent experimental studies on VIV of an
elastically mounted circular cylinder (Jauvtis and Williamson, 2004; Kang and Jia, 2013; Sanchis et al., 2008; Srinil et al.,
2013; Stappenbelt et al., 2007).

The cylinder is free to vibrate in both the in-line and cross-flow directions. The mass ratios of the cylinder in the in-line
and cross-flow directions are set to be identical and take the value of m∗

x = m∗
y = m∗

= 2. Such a low mass ratio is
selected because a dramatic change in the fluid–structure interactions of 2DOF VIV was observed by Jauvtis andWilliamson
(2004) when the mass ratio m∗ is less than 6. The mass ratios in the in-line and cross-flow directions are set to be identical
as this scenario is of more practical relevance to real cylindrical offshore structures (Srinil et al., 2013). As the vibration
amplitudes reported in previous CFD simulations at low Re (Bao et al., 2012; Gsell et al., 2016; Lucor and Triantafyllou, 2008;
Singh andMittal, 2005) are smaller than the amplitudes observed in experiments at higher Re (Blevins and Coughran, 2009;
Dahl et al., 2006; Jauvtis and Williamson, 2004; Srinil et al., 2013), in order to maximise the vortex-induced response of
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Fig. 1. (a) Computational domain and (b) computational mesh.

the cylinder, the damping coefficients are set to zero by the various authors in their numerical simulations. Similarly, zero
damping coefficients in the in-line and cross-flow directions are also adopted in the present study, i.e., cx = cy = c = 0. The
Vr is varied from2 to 12with an increment of 1 and for each Vr , three natural frequency ratios are considered (i.e., f ∗

= 1, 1.5,
and 2).

3.2. Computational domain and boundary conditions

Fig. 1(a) shows the computational domain that is used in the present simulation. The size of the domain is 40D × 20D ×

12D. The cylinder is located at 10D downstream of the inlet boundary and the origin of the Cartesian coordinate system is
located at the centre of the bottom end of the cylinder. The computational mesh is displayed in Fig. 1(b). There are 120 nodes
along the circumference of the cylinder and the minimum mesh size adjoining the cylinder surface in the radial direction
is 0.001D. The boundary conditions for the governing equations are as follows. The surface of the cylinder is assumed to be
a no-slip wall. The velocity at the inlet boundary is set to be the same as the freestream velocity. At the outflow boundary,
the gradients of the fluid velocity in the streamwise direction are set to zero and the pressure at the outflow boundary is
assigned a reference value of zero. The free-slip boundary conditionwith the velocity in the direction normal to the boundary
being zero is used on the two transverse boundaries and a periodic boundary condition is imposed on the top and bottom
boundaries. At t = 0, the displacements and velocities of the cylinder are zero (x1 = x2 = 0 and ẋ1 = ẋ2 = 0).

3.3. Validation test

To verify the numerical methods, 2DOF VIV of a circular cylinder with m∗
= 10 and L/D = 4 at Re = 1000 is first

simulated. For the purpose of making a reasonable comparison with the numerical results for increasing Vr in Navrose and
Mittal (2013), the Vr in the present validation test is also increased in small steps. Fig. 2(a) and (b) are the comparisons of
the root mean square (rms) of the vibration amplitudes against Vr in the in-line and cross-flow directions, respectively. The
results demonstrate good agreement with those of Navrose and Mittal (2013). The maximum rms in-line and cross-flow
vibration amplitudes predicted in both studies are Axrm/D ≈ 0.016 and Ayrm ≈ 0.5, respectively. This test case demonstrates
that the present numericalmethods are capable of accurately predicting 2DOFVIV response of an elasticallymounted circular
cylinder at early subcritical Reynolds numbers.
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Fig. 2. Comparison of the present numerical results with numerical results by Navrose and Mittal (2013) for increasing Vr : (a) rms of in-line vibration
amplitudes and (b) rms of cross-flow vibration amplitudes.

Table 1
Comparison of the results from three different meshes.

Mesh Nnode (M) Nelement (M) ∆z/D ∆r/D Nc Ax/D Ay/D fox foy θ (deg)

1 0.37 0.39 0.2 0.002 96 0.408 0.818 1.875 0.937 341.140
2 0.89 0.93 0.1 0.001 120 0.355 0.797 1.875 0.937 343.540
3 2.27 2.34 0.05 0.001 160 0.341 0.786 1.875 0.937 344.300

Table 2
Comparison of the results using different time-step sizes.

V∆t/D Ax/D Ay/D fox foy θ (deg)

0.005 0.368 0.819 1.875 0.937 342.560
0.002 0.355 0.797 1.875 0.937 343.540
0.001 0.350 0.808 1.875 0.937 343.870

3.4. Mesh dependency study

In order to quantify the dependency of the numerical results on the mesh density, numerical simulation of 2DOF
VIV of a circular cylinder at f ∗

= 2 and Vr = 6 is performed using three different meshes as summarised in Table 1
in which Nnode, Nelement , ∆z, ∆r and Nc represent the number of nodes, the number of elements, the mesh size in the
spanwise direction, the minimum mesh size next to the cylinder surface in radial direction and the number of nodes
along the circumference of the cylinder, respectively. Quantitative comparisons of the dimensionless oscillation amplitudes
(Ax/D, Ay/D), normalised oscillation frequencies (fox/fny, foy/fny) and phase differences (θ ) between the nondimensional in-
line and cross-flow displacements (x/D and y/D) calculated from the differentmeshes are provided in Table 1. As is observed
in Table 1, fox/fny and foy/fny predicted by the three meshes are identical. The differences in Ay/D and θ between Mesh 2 and
Mesh 3 are 1.4% and 0.2%, respectively. The maximum difference of 4.1% occurs in Ax/D between Mesh 2 and Mesh 3. The
comparison among the results from the differentmeshes suggests that themesh density ofMesh 2 is sufficient for predicting
accurate results of 2DOF VIV at Re = 500.

3.5. Time-step size dependency test

A time-step size dependency test is conducted on Mesh 2 with three nondimensional time-step sizes (V∆t/D = 0.005,
0.002 and 0.001) for the same case as used in themesh dependency study. The corresponding results are tabulated in Table 2.
It shows that the maximum difference between V∆t/D = 0.005 and 0.002 is around 3.6% and it decreases to approximately
1.5% between V∆t/D = 0.002 and 0.001. Therefore, the numerical results are independent on the time-step size when
V∆t/D ≤ 0.002. In the consideration of computational efforts, V∆t/D = 0.002 is adopted for the simulation in this paper.

4. Results and discussions

The 2DOF VIV of a circular cylinder with f ∗
= 1, 1.5 and 2 at Re = 500 is simulated in a Vr range of Vr = 2–12. The effect

of f ∗ on the 2DOF VIV responses and the 3D flow features around the cylinder is examined.
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Fig. 3. Variation of the response amplitudes with the reduced velocity at different natural frequency ratios: (a) in-line response amplitudes and (b) cross-
flow response amplitudes.

4.1. Response amplitudes

Previous studies have shown that f ∗ has a significant influence on the vibration amplitudes of the cylinder especially
when f ∗ is close to 2 (Bao et al., 2012; Dahl et al., 2006; Lucor and Triantafyllou, 2008; Sarpkaya, 1995). In this section, the
effect of f ∗ on the response amplitudes is explicated. Fig. 3 shows the variation of Ax/D and Ay/D with Vr at different f ∗.
As is observed in Fig. 3(a), the maximum in-line amplitude (Axm/D) increases in coordination with f ∗. Axm/D of f ∗

= 1 and
1.5 appear at an identical reduced velocity Vr = 5 and take the values of Axm/D = 0.035 and 0.224, respectively. When f ∗

increases to 2, Axm/D increases to 0.345 and shifts to a higher reduced velocity Vr = 6. As for Ay/D, the amplitude curves
of f ∗

= 1 and 1.5 exhibit similar trends against Vr with a slight increase in Aym/D from 0.634 to 0.695 when f ∗ increases
from 1 to 1.5. A sharp increase in Ay/D is observable when f ∗ increases to 2. Similar to Axm/D, Aym/D also shifts to a higher
reduced velocity Vr = 7 and its value increases to Aym/D ≈ 1. The increase of the vibration amplitude (A/D) and the shift of
the peak amplitude (Am/D) to a higher reduced velocity when f ∗ varies from 1 to 2 were also observed in the 2D numerical
simulation of Lucor and Triantafyllou (2008) at Re = 1000 and Bao et al. (2012) at Re = 150.

The shapes of the response curves in the present study are qualitatively similar to those obtained from the 2D CFD
simulation at Re = 150 by Bao et al. (2012) (Fig. 4). The lock-in ranges of the present results are wider than those in Bao
et al. (2012) owing to the lowerm∗ used in the present simulation. When f ∗ = 2, multiple small peaks were observed by Bao
et al. (2012) whereas the cross-flow response at f ∗

= 2 in the present simulation shows a single peak. In order to investigate
the possible explanations for this discrepancy, a 2D simulation of 2DOF VIV of a circular cylinder with the same parameters
as in the study of Bao et al. (2012) is conducted at f ∗

= 2 and the results are plotted in Fig. 4(c). As is shown in Fig. 4(c), the
cross-flow response in the present 2D simulation also displays a single peak. It is thus speculated that the discrepancy can
be attributed to the variance in the stability of the numerical methods used for solving the structural dynamic equations. In
fact, Bao et al. (2012) used an explicit time integration method which is conditionally stable while the Newmark integration
scheme used in the present study is unconditionally stable.

With m∗
x ̸= m∗

y , Sarpkaya (1995) and Dahl et al. (2006) observed a two-peak cross-flow response when f ∗ approaches 2.
However, the studies of Lucor and Triantafyllou (2008) and Srinil et al. (2013) with m∗

x = m∗
y revealed a single-peak cross-

flow response. Srinil et al. (2013) attributed the single-peak cross-flow response at f ∗
≈ 2 to m∗

x = m∗
y . The observation of

the single-peak cross-flow responses in the present 2D and 3D simulations when f ∗
= 2 form∗

x = m∗
y is consistent with the

conclusion by Srinil et al. (2013).
As noted above, in the present 3D simulation, A/D increases and Am/D shifts to a higher Vr when f ∗ increases from 1 to 2,

which is consistentwith the numerical simulation results by Lucor and Triantafyllou (2008) at Re = 1000 and Bao et al. (2012)
at Re = 150. Conversely, the change inA/D aswell as the shift ofAm/Dwhen f ∗ varies from1 to2 in the experimental studies by
Dahl et al. (2006) (Re = 11,000–60,000) and Srinil et al. (2013) (Re = 2,000–50,000) at higher Re are not obvious. Furthermore,
compared to Aym/D of around 1.5 in the experimental studies, the present Aym/D is relatively small. The aforementioned
differences in the amplitude responses indicate the possible influence of Re on 2DOF VIV as suggested by Swithenbank et al.
(2008).

4.2. Response frequencies

The occurrence of dual resonance has been widely reported for 2DOF VIV (Bao et al., 2012; Dahl et al., 2010; Srinil and
Zanganeh, 2012; Srinil et al., 2013;Wang and Xiao, 2016; Zanganeh and Srinil, 2014). Fig. 5 shows the variation of fox/fny and
foy/fny with Vr at different f ∗. According to the synchronisation between the response frequency and the natural frequency
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Fig. 4. Comparison of amplitude response curves between the present simulation and Bao et al. (2012): (a) f ∗
= 1, (b) f ∗

= 1.5 and (c) f ∗
= 2.

in Fig. 5, the lock-in ranges of the three different f ∗ are identical, i.e., Vr = 5–10. fox/fny and foy/fny are almost constant within
the lock-in range and are linear functions of Vr in the pre-lock-in (2 ≤ Vr < 5) and post-lock-in (10 < Vr ≤ 12) ranges. It
can also be understood from Fig. 5 that the ratio of the in-line oscillation frequency to the cross-flow oscillation frequency
is around 2 regardless of f ∗. As is explained by Dahl et al. (2010), under dual resonance, the cylinder vibrates at frequencies
approaching the Strouhal frequency fv in the transverse direction and 2fv in the in-line direction, respectively. The 2:1 fox/foy
in the present study indicates that dual resonance exists over a wide range of the natural frequency ratios.

The time histories of the total drag coefficient CD = Fx/(0.5ρV 2DL), total lift coefficient CL = Fy/(0.5ρV 2DL), x/D and
y/D at Vr = 3 and 6 when f ∗

= 1 are illustrated in Fig. 6, which reveal the vibrations are regular at Vr = 6 as compared to
Vr = 3 where the beating phenomenon occurs. The beating behaviour in the pre-lock-in range agrees with the observations
of Navrose and Mittal (2013) and Zhao et al. (2014). Zhao et al. (2014) attributed the beating phenomenon to the 2D feature
of the flow. The present study confirms the strong two-dimensionality of the flow at low reduced velocities by investigating
the correlation lengths and vortex structures in Sections 4.6 and 4.7, respectively.
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Fig. 5. Variation of the response frequencies with the reduced velocity at different natural frequency ratios: (a) in-line response frequencies and (b)
cross-flow response frequencies.

Fig. 6. Time histories of the cylinder displacements and total lift and drag coefficients when f ∗
= 1: (a) Vr = 3 and (b) Vr = 6.

4.3. Orbital trajectories

Dahl et al. (2008) reported that the orbital shape of the cylinder is critical in defining the amplitude and frequency content
of the hydrodynamic forces and according to Bourguet et al. (2013), the direction of the orbital motion is closely related to
the energy transfer between the fluid and the structure. Therefore, it is of great significance to study the effect of f ∗ on the
orbital trajectories of the cylinder. The variation of the orbital trajectories with Vr at different f ∗ is displayed in Fig. 7(a). It
can be observed that most of the orbital trajectories are of a figure-eight shape which is indicative of the 2:1 fox/foy. Thus,
the figure-eight trajectories are also evidence of the occurrence of dual resonance (Dahl et al., 2010).

The orbit orientation of a trajectory is related to the phase difference (θ ) between x/D and y/D. As elucidated by Huera-
Huarte and Bearman (2009) and Bourguet et al. (2013), the phase difference can be defined as θ = θx − 2θy where θx and θy
are phase angles of the in-line and cross-flow responses. According to Jauvtis and Williamson (2004), an orbital trajectory
is counterclockwise when 0◦

≤ θ < 90◦ or 270◦ < θ ≤ 360◦ and clockwise when 90◦ < θ < 270◦. Crescent shapes
correspond to θ = 90◦ or 270◦. The phase differences demonstrated in Fig. 7(b) highlight that most of the orbital trajectories
are counterclockwise, i.e., the cylinder motion is counterclockwise at the top of the figure-eight motion. The exceptional
clockwise trajectories are highlighted in red in Fig. 7(a) and a close-up of the orbital trajectory at Vr = 3 and f ∗

= 1.5 is
displayed in Fig. 8(a) revealing that the trajectory is of a clockwise figure-eight shape.

As determinable from Fig. 7(a), the number of clockwise trajectories decreases as f ∗ increases from 1 to 2. The
counterclockwise direction is the predominant orbit orientation in the lock-in range. The observation agrees with that
reported by Bourguet et al. (2011). According to Dahl et al. (2007), the upstreammotion of the cylinder in a counterclockwise
trajectory leads to a closer proximity of the cylinder and the recently shed vortices and energy is transferred from the fluid
to the body. Whereas in clockwise orbits, the flow acts as the damping of the cylinder vibration (Bourguet et al., 2011).
Oblique figure-eight trajectories similar to those reported by Kang and Jia (2013) and Gedikli and Dahl (2014) are observed
at Vr = 6, 7 and 8 when f ∗

= 1 in the present study. Fig. 8(b) illustrates the oblique figure-eight trajectory at Vr = 6 and
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Fig. 7. (a) Variation of the orbital trajectories with the reduced velocity at different natural frequency ratios and (b) variation of the phase differences
between in-line and cross-flow displacements with the reduced velocity at different natural frequency ratios. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Zoom-in view of orbital trajectories: (a) clockwise figure-eight trajectory at Vr = 3 and f ∗
= 1.5 and (b) oblique counterclockwise figure-eight

trajectory at Vr = 6 and f ∗
= 1.

f ∗
= 1. The amplitude spectra of x/D and y/D at Vr = 6 and f ∗

= 1 are plotted in Fig. 9. Similar to other cases under
dual resonance, the ratio of the dominant in-line to cross-flow oscillation frequencies in an oblique figure-eight trajectory
is also approximately 2. However, for the in-line displacement, apart from the dominant frequency component at twice
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Fig. 9. Amplitude spectra of displacements at Vr = 6 and f ∗
= 1: (a) in-line displacement and (b) cross-flow displacement.

the cross-flow oscillation frequency (2foy), there is also a frequency component equal to 1foy. The additional 1foy frequency
component in x/D leads to the asymmetry of the Lissajous figure.

4.4. Hydrodynamic forces

When the cylinder is vibrating in two degrees of freedom, the in-line vibration has significant influence on the
hydrodynamic forces. Fig. 10 shows the variation of CD and CL with Vr . As is observed in Fig. 10(a), the mean drag coefficient
(CDmean) curves of f ∗

= 1 and 1.5 nearly coincide, while an obvious increase in the CDmean is observed at f ∗
= 2. The rms

values of the oscillating drag coefficient (CDrms) jump notably at f ∗
= 2 and Vr = 4. The peak CDrms is nearly three times

as large as it is at f ∗
= 1 and 1.5. The large drag fluctuation agrees with the observations of Dahl et al. (2010) and Bao et

al. (2012). Compared to the oscillating drag, the fluctuation of the rms values of the oscillating lift coefficient (CLrms) is less
sensitive to f ∗.

The time histories of CD and CL at Vr = 3 and 6 when f ∗
= 1 are shown in Fig. 6. Similar to the VIV responses, the beating

phenomenon is also discernible in the hydrodynamic force coefficients at Vr = 3 which again can be attributed to the 2D
feature of the flow at low reduced velocities. The CL time history makes evident that there is a third harmonic component
in CL at Vr = 6. Fig. 11 shows the amplitude spectra of CL at different f ∗. It is apparent that for the three f ∗ considered in the
present study, there is a third harmonic component in CL in the lock-in range. The third harmonic forces were found to be
associatedwith the counterclockwisemotion of the cylinder by Dahl et al. (2010).With the increase of the natural frequency
ratio, the third harmonic component becomes larger.

4.5. Effective added mass coefficients

It is observed in Fig. 5 that fox/foy is always in the vicinity of 2 regardless of f ∗. The 2:1 fox/foy at different f ∗ is the
consequence of the change in the effective added mass. According to Dahl et al. (2010), the oscillation frequency of the
cylinder can be defined as follows.

fo =

√
K

m + mea
(10)

where mea is the effective added mass. The effective fluid added mass force changes mea of the system leading to the 2:1
fox/foy, although f ∗ may be distant from 2. Similar to the mass ratiom∗, the effective added mass can be nondimensionalised
as Cm = mea/(ρπD2L/4). The coefficient Cm represents a force coefficient due to vortex dynamics that is in phase with the
acceleration of the cylinder. The effective added mass coefficients in the in-line and cross-flow directions (Cmx and Cmy) are
determined based on the second harmonic component of the fluctuating drag and the first harmonic component of the lift
as in Jauvtis and Williamson (2004).

Cmx =
2V 2CD2 cos (φx)

π (Ax/D)D2(2π fox)2
(11)

Cmy =
2V 2CL1 cos

(
φy

)
π

(
Ay/D

)
D2

(
2π foy

)2 (12)
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Fig. 10. Variation of the hydrodynamic force coefficients with the reduced velocity at different natural frequency ratios: (a) mean drag coefficients, (b) rms
of total drag coefficients and (c) rms of total lift coefficients.

Fig. 11. Amplitude spectra of the total lift coefficients: (a) f ∗
= 1, (b) f ∗

= 1.5 and (c) f ∗
= 2.
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Fig. 12. Variation of the effective added mass coefficients with the reduced velocity at different natural frequency ratios: (a) in-line effective added mass
coefficients and (b) cross-flow effective added mass coefficients.

where CD2 and φx are the magnitude of the second harmonic component of the fluctuating drag coefficient and its phase
angle with respect to x/D, respectively. CL1 and φy are the magnitude of the first harmonic component of CL and its phase
angle with respect to y/D, respectively.

Fig. 12 demonstrates the variation of Cmx and Cmy with Vr at different f ∗. According to Fig. 12(a), Cmx decreases with the
increase of Vr . The decreasing trend is observed for all the three f ∗ considered and it is also reflected by the increase of
fox/fny with the increase of Vr as shown in Fig. 5. A large deviation is observed for the Cmx curves at different f ∗. At f ∗

= 1,
most of the Cmx values are negative. By contrast, they become positive throughout the Vr range considered when f ∗

= 2.
Negative Cmx with the lowest value being around −2 was also reported by Bao et al. (2012) in their 2D CFD study and in the
reduced-order modelling of Zanganeh and Srinil (2014). In the cross-flow direction, Cmy also decreases with the increase of
Vr . However, unlike the Cmx curves, the Cmy curves at different f ∗ show obvious overlap in the range of Vr considered. This
seems reasonable because a larger variation of Cmx is required in order to drive fox/foy to 2 when f ∗ is distant from 2.

4.6. Correlation lengths

The three-dimensionality of the flow in the near wake of the cylinder which determines the fluctuations of the forces
acting on the cylinder is measured by the spanwise correlation length. Previous experimental and numerical studies
indicated that there was a sharp drop in spanwise correlation at the end of the upper branch near the transition between the
upper and lower branches, which does not diminish the response of the cylinder (Hover et al., 2004, 1998; Lucor et al., 2003,
2005; Zhao et al., 2014). In the present study, the autocorrelation function defined by Lucor et al. (2005) is used to quantify
the correlation. The autocorrelation function is described as follows.

R (l, t) =
1
Nt

Nt∑
j=1

⎡⎢⎢⎢⎢⎢⎣
(1/Nz)

Nz∑
i=1

CL
(
zi, tj

)
CL

(
zi − lk, tj

)
(1 − Nz)

Nz∑
i=1

C2
L

(
zi, tj

)
⎤⎥⎥⎥⎥⎥⎦ (13)

where CL(zi, tj) is taken to be the fluctuation of the original signal C∗

L (zi, tj) from which its mean quantity is subtracted. The
signal CL(zi, tj) is given by

CL
(
zi, tj

)
= C∗

L

(
zi, tj

)
−

1
Nt

Nt∑
n=1

CL (zi, tn) . (14)

The shift lk in Eq. (13) is prescribed to be

lk = k × l = k × dz with dz = l/Nz and k =

[
0, 1, 2, . . . ,

Nz

2

]
. (15)

The correlation length LC is then computed by

LC (t) = 2
∫ L/D

2

0
R (l, t) dl. (16)
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Fig. 13. Variation of the correlation lengths with the reduced velocity at different natural frequency ratios.

Fig. 13 shows the variation of the nondimensional correlation length (LC/D) with Vr at different f ∗. At f ∗
= 1, the maximum

correlation length is witnessed at Vr = 2 while it shifts to Vr = 4 when f ∗
= 1.5 and 2. In general, LC/D is very large for low

Vr in the pre-lock-in range which is an indication of the strong two-dimensionality of the flow. As has been alluded to in the
previous sections, the strong two-dimensionality of the flow is the cause of the beating phenomenon in the VIV responses
and the hydrodynamic forces. There is a drop in LC/D as Vr increases and it reaches its minimum value at Vr close to the
transition region between lock-in and post-lock-in ranges. Finally, LC/D increases for larger Vr in the post-lock-in range.

The variation of CL along the span at Vr = 3, 6 and 9 for f ∗
= 1 and 2 is examined by plotting the contours of the sectional

lift coefficient (CL(z) = Fy(z)/(0.5ρV 2D)) on the z–t plane. These three Vr are selected in a way that Vr = 3 represents the
cases with large LC/D. Vr = 6 is in proximity to the location where Am/D appears and Vr = 9 is near the region where LC/D
approaches its minimum value. As for the two f ∗, f ∗

= 1 and 2 correspond to the most common case of 2DOF VIV and the
scenario where perfect 2DOF resonance might occur, respectively. Fig. 14 demonstrates that the CL distribution along the
span is well organised at Vr = 3 for both f ∗

= 1 and 2 revealing the 2D feature of the flow at Vr = 3. When Vr increases
to 6, the variation of CL along the span grows stronger. CL(z) at different spanwise locations suffer relative phase shifts with
each other which consequently results in the variation of the phase difference between CL(z) and y/D along the cylinder.
The decrease in LC/D can be attributed to the poor phasing between the forces and the displacement (Lucor et al., 2003,
2005). With an increase in Vr to 9, the relative phase shifts among CL(z) signals become more obvious leading to an even
poorer correlation. The observation from the contours of CL(z) agrees with the conclusion drawn from the computed LC/D
in Fig. 13.

4.7. Vortex shedding

One of the objectives of this paper is to study the effect of the natural frequency ratio on the vortex shedding of 2DOF
VIV. The 3D vortex structures are defined using the λ2 method proposed by Jeong and Hussain (1995) in which λ2 is the
second eigenvalue of the symmetric tensor S2 +Ω2. Here, S andΩ are the symmetric and antisymmetric parts of the velocity
gradient tensor ∇u. Fig. 15 presents the iso-surfaces of λ2 at Vr = 3, 6 and 9 for f ∗

= 1 and 2. The reasons for the choice of
specific combinations of Vr and f ∗ are provided in Section 4.6. The spanwise vorticity defined as ωz = ∂u2/∂x1 − ∂u1/∂x2
are plotted on the iso-surfaces. It can be observed that the wake flow is entirely 3D. The wake in the lock-in range is wider
than that in the non-lock-in range. Among the three Vr considered for each f ∗, the widest wake is observed at Vr = 6 which
is close to the Vr where Am/D appears. The variation of the flow in the lock-in range is also stronger than in the non-lock-in
range. The vortices in the spanwise direction can be clearly identified at Vr = 3 for both f ∗ = 1 and 2. The clearly identifiable
spanwise vortices indicate the strong two-dimensionality of the flow at low Vr which is related to the beating phenomenon
as discussed in Sections 4.2 and 4.4. With the increases of Vr and f ∗, the variation of the spanwise vortices becomes stronger
but they can still be identified at Vr = 6 and f ∗

= 1. However, it is difficult to identify the spanwise vortices in the remainder
of the cases presented in Fig. 15. The changes in the spanwise vortices agree with the variation of LC/D as shown in Fig. 13.

To further examine the variation of the flow in the spanwise direction of the cylinder, the contours of ωz at four instants
of time in one cycle (t = 0, 0.25Toy, 0.5Toy and 0.75Toy where Toy is the period of the cross-flow vibration) are plotted. The
corresponding y/D at different time instants are: 0, Ay/D, 0 and -Ay/D, respectively. At each time instant considered, ωz on
three cross sections (z/L = 0.25, 0.5 and 0.75) are presented to study the variation of the vortex shedding modes along the
cylinder. The three cross sections are chosen in favour of those closer to the cylinder ends to avoid the potential end effect
of the periodic boundary condition employed on the two spanwise boundaries.
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Fig. 14. Contours of the sectional lift coefficients: (a) Vr = 3 and f ∗
= 1, (b) Vr = 3 and f ∗

= 2, (c) Vr = 6 and f ∗
= 1, (d) Vr = 6 and f ∗

= 2, (e) Vr = 9
and f ∗

= 1 and (f) Vr = 9 and f ∗
= 2.

Figs. 16 and 17 are theωz contours in one cycle on the three cross sectionswhen Vr = 3 for f ∗
= 1 and 2. By comparing the

vorticity contours at different time instants on each cross section, the vortex shedding in both cases is found to demonstrate
a clear 2S pattern with two single vortices being formed in one cycle as described by Williamson and Roshko (1988).
The vortex shedding flows on the different cross sections are nearly in phase with each other and the vortex shedding
patterns are very similar indicating the strong two-dimensionality of the flow at low Vr in the pre-lock-in range. Such
vortex wake structure leads to the well-organised distribution of CL(z) along the cylinder span at Vr = 3, as mentioned in
Section 4.6.

Fig. 18 shows the ωz contours when Vr = 6 and f ∗
= 1. As is explicated in Section 4.3, the orbital trajectory of the

cylinder in this case is an oblique figure-eight shape. Therefore, it is anticipated that the wake of the cylinder would display
asymmetry. It can be seen from Fig. 18 that the vortex shedding at z/L = 0.25 and 0.5 exhibits a P + S mode where the
cylinder sheds a single vortex and a vortex pair per cycle. The P + Smode was first identified in forced vibration experiments
(Griffin and Ramberg, 1974; Zdera et al., 1995) and recently has also been detected in the free vibration studies by Singh
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Fig. 15. Isosurfaces of eigenvalue λ2 with the contours of the spanwise vorticity ωz on the isosurfaces: (a) Vr = 3 and f ∗
= 1, (b) Vr = 3 and f ∗

= 2, (c)
Vr = 6 and f ∗

= 1, (d) Vr = 6 and f ∗
= 2, (e) Vr = 9 and f ∗

= 1 and (f) Vr = 9 and f ∗
= 2.

and Mittal (2005), Bao et al. (2012) and Gedikli and Dahl (2014). In spite of the P + S mode at z/L = 0.25 and 0.5, a 2S mode
appears at z/L = 0.75. The dominant asymmetric P + S vortex shedding at Vr = 6 and f ∗

= 1 is related to the additional 1foy
frequency component in the in-line motion and the oblique figure-eight trajectory.

The vortex shedding along the cylinder at Vr = 6 and f ∗
= 2 is displayed in Fig. 19. The vortex shedding at z/L = 0.25

and 0.75 is in a 2P mode with two pairs of vortices being formed per cycle. Evidence of the 2P vortex shedding mode in free
vibration was first exhibited by Brika and Laneville (1993, 1995). For the 2P mode at z/L = 0.25, the vortices are in pairs
when they are shed from the cylinder. However, when the vortex pairs progress downstream, they split into multiple small
scale vortices. The present observation agrees qualitatively with the CFD results of Zhao et al. (2014). In contrast, the vortex
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Fig. 16. Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration cycle on three cross sections along the cylinder at Vr = 3
and f ∗

= 1: (a) z/L = 0.25, (b) z/L = 0.5 and (c) z/L = 0.75.

Fig. 17. Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration cycle on three cross sections along the cylinder at Vr = 3
and f ∗

= 2: (a) z/L = 0.25, (b) z/L = 0.5 and (c) z/L = 0.75.

pairs at z/L = 0.75 similar to the flow visualisation results in the experiment by Govardhan andWilliamson (2000) aremore
stable. At z/L = 0.5, a P + S mode resembling that in Bao et al. (2012) is observed.

In the instance where Vr = 9 and f ∗
= 1 (Fig. 20), the vortex shedding at z/L = 0.25 exhibits a P + S mode and a 2Pmode

is observed at z/L = 0.5 and 0.75. As for Vr = 9 and f ∗
= 2, as it appears in Fig. 21, although two pairs of vortices are shed in

one cycle on the three cross sections, the vortex shedding patterns on the different cross sections are noticeably different.
The discussions above can be summarised as follows. When Vr = 3 at f ∗

= 1 and 2, the vortex shedding structures
on the different cross sections are in phase and have similar 2S patterns, which leads to the well-organised distribution of
CL(z) along the cylinder and relatively large LC/D. With the decrease of LC/D, the variation of the vortex shedding patterns
along the cylinder becomes apparent. This causes the relative phase shifts of the CL(z) signals at different spanwise locations
as mentioned in Section 4.6, and consequently results in a poor phasing between CL(z) and y/D. According to Lucor et al.
(2003, 2005), it is the poor phasing between the forces and the displacement that causes the decrease of LC/D. As for the
dominant vortex shedding mode in the cases with poor spanwise correlation, it modifies from a P + S mode to a 2P mode
when f ∗ increases from 1 to 2 at Vr = 6 and a 2P mode dominated vortex shedding is observed for both f ∗

= 1 and 2 at
Vr = 9.
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Fig. 18. Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration cycle on three cross sections along the cylinder at Vr = 6
and f ∗

= 1: (a) z/L = 0.25, (b) z/L = 0.5 and (c) z/L = 0.75.

Fig. 19. Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration cycle on three cross sections along the cylinder at Vr = 6
and f ∗

= 2: (a) z/L = 0.25, (b) z/L = 0.5 and (c) z/L = 0.75.
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Fig. 20. Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration cycle on three cross sections along the cylinder at Vr = 9
and f ∗

= 1: (a) z/L = 0.25, (b) z/L = 0.5 and (c) z/L = 0.75.

Fig. 21. Contours of spanwise vorticity ωz at different instants of time in one cross-flow vibration cycle on three cross sections along the cylinder at Vr = 9
and f ∗

= 2: (a) z/L = 0.25, (b) z/L = 0.5 and (c) z/L = 0.75.

5. Conclusions

The effect of f ∗ on 2DOF VIV of an elastically mounted circular cylinder is numerically studied at Re = 500 using a 3D CFD
method. A low mass ratio m∗

= 2 and zero structural damping are considered in the simulation. The Vr range is Vr = 2–12
and f ∗ varies from1 to 2with an increment of 0.5. Based on the qualitative and quantitative analyses of the numerical results,
the findings of this paper may be laid out as follows.
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It is found that f ∗ has a significant impact on the A/D of the cylinder. In the present study, Am/D increases and shifts to
a higher Vr when f ∗ increases from 1 to 2. Where m∗

x = m∗
y , a single-peak cross-flow response is observed for f ∗

= 2. Dual
resonance exists over awide range of f ∗ with fox/foy being approximately 2 andmost of the orbital trajectories having a figure-
eight shape. The primary direction of the trajectories in the lock-in range is clockclosewise in which energy is transferred
from the fluid to the body as a result of the closer proximity of the cylinder to the recently shed vortices. Conversely, the
clockwise orbits are associated with damping fluid forces. The number of clockwise trajectories decreases as f ∗ increases.

CDmean and CDrms experience evident increases as f ∗ approaches 2 while CLrms is not quite sensitive to f ∗. A third harmonic
component is observed in CL in the lock-in range. It is also found that with the increase of f ∗, the third harmonic component
becomes larger. The large third harmonic forces are found to be related to the counterclockwise motion of the cylinder. Due
to the 2D feature of the flow, the displacements and hydrodynamic forces exhibit beating features. In terms of Cm, both Cmx
and Cmy decrease with the increase of Vr . As the variation of Cmx required to drive fox/foy to 2 is larger when f ∗ is distant from
2, the deviation in Cmx for different f ∗ is more obvious than that in Cmy.

Large LC/D is observed for low Vr in the pre-lock-in range which indicates the 2D characteristics of the flow. LC/D
experiences a decrease as Vr increases and reaches its minimum value at Vr near the transition region between the lock-
in and post-lock-in ranges where the three-dimensionality of the flow is strongest. The decrease of LC/D is due to the poor
phasing between the forces and the displacement. After the trough, LC/D begins to increase with increases of Vr in the
post-lock-in range.

The vortex shedding is also found to be related to f ∗. It is revealed that the wake in the lock-in range is wider than that
in the non-lock-in range. The variation of the spanwise vortices is weaker when LC/D is large. With the decrease of LC/D, it
becomes more difficult to identify the spanwise vortices. In the present study, three vortex shedding modes are observed,
i.e., 2S, P + S and 2Pmodes. A 2Smode is observed at Vr = 3 for both f ∗

= 1 and 2. The vortex shedding structures on different
spanwise cross sections are in phase with each other and the patterns are similar, which results in the strong correlation of
CL(z) at low Vr in the pre-lock-in range. At Vr = 6, variation of vortex shedding modes along the cylinder is observed. When
f ∗

= 1, the vortex shedding is dominated by a P + S mode with a 2S mode appearing in the upper part of the cylinder. The
asymmetric nature of the P + S mode is associated with the additional 1foy frequency component in the in-line motion and
the oblique figure-eight trajectory. The dominant vortex shedding mode switches to a 2P mode when f ∗

= 2 with a P + S
mode being observed on themiddle section of the cylinder. When Vr is further increased to 9, the dominant vortex shedding
mode for both f ∗

= 1 and 2 is a 2P mode with a P + S mode being found in the lower part of the cylinder at f ∗
= 1. The

variation of CL(z) along the span is related to the variation of the vortex shedding flows.
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