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Quiz time!!

Can you guess which component that ...

« governs the survivability of FOWT

* |ts internal forces cannot be measured
directly or easily

o difficultly repaired and maintenance

« extremely high OPEX with large scale
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total electricity demand 11 times over in 2040” (World Energy Outlook

Introduction
Background - Why Floating Offshore Wind?

“Floating turbines could unlock enough potential to meet the world’s

Special Report 2019, International Energy Agency)

48.2 GW offshore wind capacity was completed by 2021 (Crown

Estate’s tenth annual Offshore Wind Report)

0 to 60 meters depth

4-legged

Monopile Jacket
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Above 60 meters depth

Semi-
Tension Leg Spar Buoy submersible
Platform 5
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Some Areas of the World Being Considered
for Floating Wind

Source: National Renewable Energy Laboratory (NREL)
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Introduction

High cost of FOWT

* Operations and maintenance is 36.6%
(71000£/MW/year, typically 1 offshore wind
turbine rates 15MW) of total life cost

« Maintenance of the plant is 62% of OPEX

Structural health monitoring problems

« Mooring monitoring has fewer details in codes
comparing to other parts e.g. turbine, tower

* Mooring failure means “Total loss” of FOWT
asset and damage electrical cable

» Current in-service mooring monitoring
technologies/methods cannot support large
scale of floating wind farms

Currently, there is no comprehensive
Digital Twin can solve the problems!

»
A 4

B Turbine nacelle 13.1%

Lifetime cost of
FOWT

[l Development and project management  2.5%

I Turbine rotor  6.3%
B Cables 5.4%

Turbine tower 3.6%
I Floating substructure 16.6%
Mooring systems 3.1% Offshore substation 2.6%
Onshore substation 1.4% B cableinstallation 2.5%
B Vooring and anchoring pre-installation 1.2% [ Floating substructure - turbine assembly 1.2%

Floating substructure - turbine installation 0.9% Offshore substation installation 0.4%

Other installation 0.2% I [l Operations and maintenance 36.6% I

[l Decommissioning 2.5%

(BVG Associates, 2023)

= -
- v <

Underwater
sensors have
fragility problem
under harsh sea
environment

Ofiginal‘ bhdto: Furgo



ONIH3IANIONT 40 ALTNOVH 3HL X

Literature
Review



ONIH3IANIONT 40 ALTNOVH 3HL X

Literature Review

Structural health monitoring

Environmental
condition
External forces

System
internal force
and stress

*

’) Cannot be measured directly
®

Fatigue and
remaining
useful life
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Literature Review

Current practice for mooring health monitoring:
Visual inspection by diver and robot Measuring force in mooring

Fixed Mooring
Strongpoint
(Main line)

Average day rates [€/day]

Support Vessel 10,000 - 30,000
Inspection class ROV 3,000-5,000
ROV crew (*) 1,000

Other inspection equipment (**) 1,000-10,000

fg orload

Ehachic Delta line with

fairlead and
Chain Stopper

(*) cost per person. Gnerally 4-6 people required for 24hr operation

(**) depends on the type of inspection

(Ma, Luo, Kwan,

Indirect detection

— Intact mooring system
|~ 1line broken

SAMIR & Wu, 2019) g Bt v 2
(Ma, Luo, Kwan, & Wu, 2019)
(Ashtead : :
Technol  Intention is not to
echnology) estimate the
mooring forces
Load pin installed at
» High cost (total daily cost Hywind mooring
of 30,000EUR) termination Inclinometers installed on top chain
« Risk exposure of human * High cost
* Inaccurate measurements
underwater

« Sensor fragility
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Literature Review

Digital Twin (DT)

It is a virtual representation of the physical asset which can
real-time reflect the response and internal states. In 2012,
the NASA showed the superiority of DTs and the concept
became well developed with the advanced of sensor
technology and internet-of-things.

DT is widely adopted for Structural Health Monitoring and
perform “virtual sensing” which is used to reconstruct the
unmeasurable states based on limited sensor data in real
life:

Response reconstruction technique

[ 1. Sensor time histories | | 4. Estimate responses |

wwwwww iy

Tm-( )
Real sensors Virtual sensors

=" >
| 2. structure discretization \ \ 3. Estimate input | //-[\
> | sty

394 306 0.8 40
Time (s)

Ar.elean n(m 5
Accale mnn(m’)

(Zhu et al., 2023)

ﬂ

(Augustyn, Smolkac, Tygesen, Ulriksen, & Sgrensen, 2020)
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Literature Review
DT Modeling Approach

White Box Black Box
. B . (13 33 .
First Principle Models Grey Box Data-Driven Models
Physics-based model with adequate performance Accurate but lack of physical interpretation
(2)
G
o )
/ N :
Al (Branlard, Eh) = 23 tth@)0) = Y (e - 2
Jonkman, = =
OFf w i Brown, &
L Zang, 2024)
e -'(:\}w;\‘-{[,gBl MANL: 122i02 [kN] (f)MLB 1\; AE = l'ZbiOl[k\]
/ \ B R ;
' - ] ) (Walker, Coraddu,
Currently there is lack of accurate and physically interpretable DT, Collu & Oneto, 2021)

a new hybrid solution is required to capture the complicated dynamic coupling!

5 and
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Literature Review

Existing Digital twin models (joint industry project)

DigiFloat (Principle Power and Akselos) National Renewable Energy Laboratory, USA
Stiesdal Offshore A/S, Denmark

OpenFAST and WELIB

\l
&

it i ——— ——— — EXTREME

: ” L= CURRENTS —

- ‘B o — MOORINGS
= (Branlard, Jonkman,

B Brown, & Zang, 2024)
.
= |4

Y
0 Time [s] 600
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Literature Review

Existing Digital twin models (joint industry project)

Maritime Research Institute Netherlands

MooringSense (European Union’s Horizon 2020) (MARIN)

INPEX Ichthys LNG

400

mn= 210deg, std= Odeg o

300

ooring
sense

~—aNySIM 01
aNySIM 02
measured

om [rad/s]

(Pauw et al.,2021)




What is next?

True Digital Twin?

Discover the unknown!
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Results

Physics-based Mooring force prediction with Kalman Filter, based on 3DOF platform motions
Sea state definition and the simulated “unknown” sea state time history

8.93 bank model A Gaussian noise Signal of o __ Heave displacement measuremen t with noise

Met-ocean properties of West e R N et
Wave Wave of Barra, Scotland from B oo % |
Sea State | Height Period B ‘ o Fre i W
SS)no. | Hs (m Ts (s LIFESS0+ % 5 10 15 20 25 30
S
P -

Pitch (Deg)
{ =

9.63 validation - L Measurement wi noise |
zero mean and standard Eoz 0
_ 10.20 ‘bankmodel = dayigtion of 0.05m heave, § 7 }
3.5 108 | EileEien 0.05m surge and 0.05 degrees . ; o -
4 11.10- "bank model pitch with reference to the Time &)
4.5 1147 validation accuracy of a typical motion 05 e tuith nofee =
5 11.80  bankmodel  sensor MRU

(Yung, Xiao, Incecik & Thompson, 2023) . of
ASME IOWTC2023-119374 “Mooring force estimation for floating offshore '0-50‘ 5 - 15 . 25
wind turbines with augmented Kalman Filter: a step towards digital twin” Time (s)

Wave Eleva tl Simulation

LT

""B{J

SS2 > < SS6 SS4

Simulated “unknown” sea states wave elevation time history
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Results

Unmeasurable states estimation

Estimation result of Wave Elevation
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Estimated vs. simulated “unmeasurable” states, wave elevation and mooring forces

(Yung, Xiao, Incecik & Thompson, 2023)
ASME IOWTC2023-119374 “Mooring force estimation for floating offshore wind turbines with
augmented Kalman Filter: a step towards digital twin”
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Results

Training Neural Network with Kalman Filter

Predict unknow sea state scenario

Simulation (Qblade [6])
Potential Theory + Morrison
Reduce Fully coupled model
computational
time and maintain L

high accuracy

System
Identification

Reduced Order Model in
State Space form

l

Due to the problems facing in the offshore wind
industry, there is a niche for developing a comprehensive
Digital Twin (DT) Model that can safeguard the FOWT.

Machine Learning (ML) is a prevailing tool for
predicting and estimating highly nonlinear dynamics. Yet
it lacks physical interpretation between the training input
data and target output data. The offline training ML
requires a big data library to form the regression and the

extreme sea conditions may not be always available.
Therefore, a new hybrid Physics-ML DT is proposed”

here. The Multi-Layer Perceptron Neural Network -is
trained online to learn the unknown dynamics, with tanh

Augmented : activation function.
states System Dynamics
T i Gkl Available Measurement
(States and ransition medess (Platform and Nacelle Motion)
Unknown 2
~ States) Control Input and h- e
. T ¢ Noise Disturbance &
y 4 — = Optimal States
Predicted ) Corrected
Statex, =) Combined Transition Model r=P o . X = Update with  » State x
—a ; — ' 1 Unscented b
m ~ Kalman Filter 1
Measurable = B
and Neural Netwaork a
Unmeasurable (Multi-Layer Perceptron)
states . . ’
ﬁ Weight and Bias

Yung, Xiao, Incecik & Thompson,
CENSIS Tech Summit 2023
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Estimation result of Wave Elevation
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Neural network learning online and converge
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Results

Irregular wave (realistic sea state) with aerodynamics coupling

Pierson—Moskowitz (P-M) spectrum
Hs=3m, Tp=10.2s (Scotland, LIFES50+ project)
Wind speed 13m/s

Noisy measurement fllterlng

Extimurton rewstt of Surge Saplacement

Predict internal forces and wave reconstruction based on
noisy measurement of floater responses, initiated from
arbitrary condition

- Able to capture the amplitude and trend

Data Assimilation online and converge
| )
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(Only force variations are shown)
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Conclusion

Valid results in estimating the unmeasurable states e.g. internal forces

Provide an alternative solution for structural health monitoring of the moorings and can be
extended to other part of the FOWT

Avoid the underwater sensor fragility problem under severe sea wave conditions and directly
utilize the measured platform data with the high confidence and accuracy

Potentially reduce extremely high costs in operating and maintenance

Wave reconstruction help improve the control strategy of the FOWT for maximising power

harvesting and reducing load
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