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Quiz time!!
Can you guess which component that …
• governs the survivability of FOWT
• its internal forces cannot be measured 

directly or easily
• difficultly repaired and maintenance
• extremely high OPEX with large scale
???

Source: National Renewable Energy Laboratory (NREL)
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Introduction
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Introduction
Background - Why Floating Offshore Wind?
▪ “Floating turbines could unlock enough potential to meet the world’s 

total electricity demand 11 times over in 2040” (World Energy Outlook 

Special Report 2019, International Energy Agency)

▪ 48.2 GW offshore wind capacity was completed by 2021 (Crown 

Estate’s tenth annual Offshore Wind Report)

Source: National Renewable Energy Laboratory (NREL)
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Introduction
High cost of FOWT
• Operations and maintenance is 36.6% 

(71000£/MW/year, typically 1 offshore wind 
turbine rates 15MW) of total life cost

• Maintenance of the plant is 62% of OPEX

Structural health monitoring problems 
• Mooring monitoring has fewer details in codes 

comparing to other parts e.g. turbine, tower
• Mooring failure means “Total loss” of FOWT 

asset and damage electrical cable
• Current in-service mooring monitoring 

technologies/methods cannot support large 
scale of floating wind farms

Currently, there is no comprehensive 
Digital Twin can solve the problems!

Lifetime cost of 

FOWT

(BVG Associates, 2023)

Underwater 
sensors have 
fragility problem 
under harsh sea 
environment

Original photo: Furgo
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Literature 
Review
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Structural health monitoring

Literature Review

Environmental 
condition
External forces

System 
internal force 
and stress

Fatigue and 
remaining 
useful life

Cannot be measured directly
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Current practice for mooring health monitoring:

SAMIR 

(Ashtead 

Technology)

Visual inspection by diver and robot Measuring force in mooring Indirect detection 

Load pin installed at 
Hywind mooring 
termination Inclinometers installed on top chain

• High cost (total daily cost 
of 30,000EUR) 

• Risk exposure of human

Literature Review

• High cost
• Inaccurate measurements 

underwater
• Sensor fragility 

• Intention is not to 
estimate the 
mooring forces

(Ma, Luo, Kwan, 
& Wu, 2019)

(Ma, Luo, Kwan, & Wu, 2019)
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Literature Review
Digital Twin (DT)

It is a virtual representation of the physical asset which can 
real-time reflect the response and internal states. In 2012, 
the NASA showed the superiority of DTs and the concept 
became well developed with the advanced of sensor 
technology and internet-of-things.

DT is widely adopted for Structural Health Monitoring and 
perform “virtual sensing” which is used to reconstruct the 
unmeasurable states based on limited sensor data in real 
life:

(Zhu et al., 2023)

(Tygesen, et al., 2021)

(Augustyn, Smolkac, Tygesen, Ulriksen, & Sørensen, 2020)
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Literature Review

(Walker, Coraddu, 
Collu & Oneto, 2021)

White Box
“Grey Box”

Black Box
DT Modeling Approach

Currently there is lack of accurate and physically interpretable DT, 
a new hybrid solution is required to capture the complicated dynamic coupling!

First Principle Models Data-Driven Models

(Branlard, 
Jonkman, 
Brown, & 
Zang, 2024)

Accurate but lack of physical interpretationPhysics-based model with adequate performance
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Literature Review
Existing Digital twin models (joint industry project)

DigiFloat (Principle Power and Akselos) National Renewable Energy Laboratory, USA
Stiesdal Offshore A/S, Denmark

OpenFAST and WELIB

(Branlard, Jonkman, 
Brown, & Zang, 2024)
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Literature Review
Existing Digital twin models (joint industry project)

MooringSense (European Union’s Horizon 2020)
Maritime Research Institute Netherlands 

(MARIN)
INPEX Ichthys LNG

(Pauw et al.,2021)
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What is next?

True Digital Twin?

Discover the unknown!
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Results 
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Results 
Physics-based Mooring force prediction with Kalman Filter, based on 3DOF platform motions
Sea state definition and the simulated “unknown” sea state time history

Sea State 
(SS) no.

Wave 
Height 
Hs (m)

Wave 
Period 
Ts (s) Remark

1 2 8.93 bank model

2 2.5 9.63 validation

3 3 10.20 bank model

4 3.5 10.68 validation

5 4 11.10 bank model

6 4.5 11.47 validation

7 5 11.80 bank model

SS2 SS6 SS4
Simulated “unknown” sea states wave elevation time history

Met-ocean properties of West 
of Barra, Scotland from 
LIFES50+

A Gaussian noise signal of 
zero mean and standard 
deviation of 0.05m heave, 
0.05m surge and 0.05 degrees 
pitch with reference to the 
accuracy of a typical motion 
sensor MRU 

(Yung, Xiao, Incecik & Thompson, 2023)
ASME IOWTC2023-119374 “Mooring force estimation for floating offshore 
wind turbines with augmented Kalman Filter: a step towards digital twin”



X   TH
E FAC

U
LTY O

F EN
G

IN
EER

IN
G

17

Results 
Unmeasurable states estimation

Estimated vs. simulated “unmeasurable” states, wave elevation and mooring forces

(Yung, Xiao, Incecik & Thompson, 2023)
ASME IOWTC2023-119374 “Mooring force estimation for floating offshore wind turbines with 

augmented Kalman Filter: a step towards digital twin”

Adapting different sea states
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Results 
Training Neural Network with Kalman Filter

Predict unknow sea state scenario 

Yung, Xiao, Incecik & Thompson, 
CENSIS Tech Summit 2023 

Neural network learning online and converge
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Results 
Irregular wave (realistic sea state) with aerodynamics coupling
Pierson–Moskowitz (P-M) spectrum
Hs=3m, Tp=10.2s (Scotland, LIFES50+ project)
Wind speed 13m/s

Predict internal forces and wave reconstruction based on 
noisy measurement of floater responses, initiated from 
arbitrary condition
 Able to capture the amplitude and trend (Only force variations are shown)

Data Assimilation online and converge

Noisy measurement filtering
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Conclusion 
• Valid results in estimating the unmeasurable states e.g. internal forces

• Provide an alternative solution for structural health monitoring of the moorings and can be 

extended to other part of the FOWT

• Avoid the underwater sensor fragility problem under severe sea wave conditions and directly 

utilize the measured platform data with the high confidence and accuracy 

• Potentially reduce extremely high costs in operating and maintenance

• Wave reconstruction help improve the control strategy of the FOWT for maximising power 

harvesting and reducing load 
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