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Shear-driven swimming in laminar flow inspired by tank treading
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To study the feasibility of shear-stress-driven locomotion in the Reynolds number range
of O(10–102), we propose an aquatic swimming system characterized by an elongated
barrel-shaped body with both ends open. The side wall of the body is enwraped within a
flexible membrane, which circulates around the body similar to the tank treading motion
of vesicles or erythrocytes (red blood cells). During the circulation, the membrane on the
outer side of the barrel and the one on the inner side travel at opposite directions (one
downstream and the other upstream), generating a net thrust force due to the inner-side
versus outer-side asymmetry of the design. The performance of this system has been
investigated numerically by using an immersed-boundary model. The results show that
this device is able to achieve forward speeds that are comparable to the circulation speed
of the membrane. Further study indicates that within the targeted Reynolds number range,
when the membrane circulation speed is given the swimming speed is not sensitive to the
Reynolds number, although it does depend on the diameter-to-length ratio of the body.

DOI: 10.1103/PhysRevFluids.10.054101

I. INTRODUCTION

Unlike conventional underwater propulsion technology, which relies on rotational blades,
biomimetic propellers utilize undulating or flapping motions of deformable bodies or body ap-
pendages (e.g., flapping fins) for force generation. The inspiration comes from the locomotion
methods of aquatic verterbrates such as fish and marine mammals, or inverterbrates such as
cephalopods [1–5]. These bio-inspired designs are expected to inherit useful features from their
natural counterparts, including high swimming speed, high manuverability, high efficiency, and low
environmental footprint.

The force needed for swimming is achieved via momentum exchange between the object and its
surrounding flow field. This momentum exchange occurs in both tangential and normal directions
at the fluid-solid interface, leading to normal stress and shear stress on the body. In most existing
designs, the "useful" part of the fluid-body interaction force, i.e., the thrust force that aligns with the
intended swimming direction, comes primary from the normal stress, even though this stress also
contributes to the generation of form drag. In contrast, the shear stress contributes mostly to drag
production in the form of skin friction.

However, shear stress plays pivotal roles in fluid-structure interactions in viscosity-dominated
flows. One example is the tank-treading responses of vesicles or erythrocytes in viscous shear flow
[6–9]. Structurally, these microscopic entities are essentially droplets of liquid enwraped within
highly flexible membranes made of lipid and proteins. In a shear flow, the membrane of such a
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FIG. 1. Tank-treading response of microscopic vesicles or cells in shear flow.

biological structure circulates around its body driven by the shear stress exerted on the surface,
which is reminiscent of the continuous track of a tracked vehicle (Fig. 1). It has been pointed out
that by locally varying the bending stiffness of the membrane of such an object, it is possible to
achieve controlled passive swimming in a shear flow via tank treading [10].

Tank treading may also provide a means of active swimming without the help of external flow
field. For instance, Purcell described a "toroidal swimmer," a hypothetical creature that propels
itself via tank-treading motion of its membrane [11]. As shown in Fig. 2, the body of this creature
has a shape of a ring torus. Its membrane circulates in the poloidal direction [see Fig. 2(b)]
to generate thrust. The feasibility of this design has been demonstrated through theoretical and
numerical analyses [12,13]. Recently, a toroidal robot has been developed [14]. Made of liquid
crystal elastomer, this donut-shaped system is able to absorb energy from light and swim in Stokes
regime where the Reynolds number is much smaller than one.

The aforementioned studies about the passive or active tank treading motions and their ap-
plications in locomotion are all conducted in Stokes flows, where the inertia effect is negligibly
small. These locomotion strategies, however, are not used by any existing systems in nature. To
date there is no artificial systems in application based on these designs either. The difficulty lies in

FIG. 2. (a) Three-dimensional view and (b) cross-sectional view of the toroidal swimmer [11].

054101-2



SHEAR-DRIVEN SWIMMING IN LAMINAR FLOW …

the creation of artificial swimmers with sophisticated activation devices to achieve the required
membrane circulation or stiffness change that are sufficiently small to reach the low Reynolds
number regime. For perspective, the size of a red blood cell is around 8 µm, which is hard to be
duplicated in manmade systems with today’s technology. Alternatively, without shrinking the length
scale of the swimmer, a high-viscosity material (polydimethylsiloxane, or PDMS) was used as the
surrounding fluid to achieve Stokes flow condition [14]. This will severely restrict the potential
application of the technology.

There do exist a few numerical simulations of the toroidal swimmer at finite Reynolds numbers
[15,16]. According to these studies, depending on the Reynolds number and the aspect ratio of
the swimmer, there are two swimming modes with opposite swimming directions, the shear-driven
mode and the jet-driven mode. A similar conclusion was reached in a two-dimensional examination
of the swimming performance of a pair of counterrotating cylinders [17]. The shear-driven mode
occurs when the Reynolds number and/or the aspect ratio are low. In this mode the shear stress
provides the propulsion force in the swimming direction, whereas the pressure thwarts the forward
motion. Due to the blunt geometry of the object, the pressure effect and the form drag it brings
are large, which affects the swimming performance of the system. Moreover, the energetics of the
problem has not been studied.

It is the purpose of this work to explore the feasibility of high effective swimming by applying
the shear-driven propulsion mode. Toward this end we will use a body geometry which suppresses
form drag while enhances shear stress parallel to the swimming direction. The performance of
this system is studied in the range of Reynolds number around O(10–102). Physically, this is the
Reynolds number of artificial aquatic swimmers in the millimeter to centimeter range of length
scale, which might be within the reach in the near future.

Toward this end, a fluid-structure interaction model based on the immersed-boundary framework
has been developed to simulate the propulsion performance in both tethered and free-swimming
scenarios of a swimmer whose membrane circulates around its body in a tank-treading style. The
thrust generation capacity, free-swimming speed, and energy expenditure during the process will be
investigated.

The rest of the paper is organized as follows. Section II contains a depiction of the physical
system to be studied, including its geometry and the kinematics of the membrane circulation for
thrust generation. This is followed in Sec. III by a brief description of the mathematical formulation
and the numerical algorithm. The numerical results are then presented in Sec. IV. Finally, in Sec.
V, conclusions are drawn.

II. PHYSICAL PROBLEM

Unlike Purcell’s toroidal swimmer shown in Fig. 2, we choose an elongated body shape with
decreased projected area in the direction of swimming to reduce form drag and increased area of the
side surface for more effective momentum exchange between the body and the fluid via shear stress.
As shown in Fig. 3, we consider a barrel-shaped body consisting of a wall around a cylindrical empty
chamber which is open in both ends. The diameter of the body is D. The axis of symmetry of the
body coincides with the x axis. The radial axis is r. The wall of the barrel is made of a deformable
zero-thickness membrane enwraping fluid inside. The thickness of the wall is d . For simplicity, it is
assumed that the fluid wrapped within the membrane (i.e., the interior fluid) has the same physical
properties, hereby density ρ and dynamic viscosity μ, as the exterior fluid. The cross-sectional view
of the wall within the x-r plane is shown in Fig. 3(b). Its thickness is d , and its length is L (not
counting for the semicircles on the ends).

Driven by an activation system that is not included in the model, the membrane circulates around
the body in a manner shown in Fig. 3. During the circulation, the membrane on the inner side of
the wall moves in the −x direction, whereas the one on the outer side of the wall moves in the x
direction. The speed of the membrane motion is V . Meanwhile, the geometry of the wall and its
surface area remain unchanged. Since the intended swimming direction is −x, hereafter the flow
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FIG. 3. (a) The three-dimensional view and (b) the cross-sectional view within the x-r plane of the physical
problem.

to the left side of the swimmer is called the upstream flow and the one to the right side is called
the downstream flow. Correspondingly, the leftmost point on the wall is the leading edge and the
rightmost point is the trailing edge.

The dynamics of the system is determined by three independent dimensionless parameters, the
aspect ratio (diameter-to-length ratio) of the body D/L, the thickness-to-length ratio of the wall d/L,
and the Reynolds number Re ≡ ρV L/μ.

III. MATHEMATICAL FORMULATIONS AND NUMERICAL APPROACH

A. Governing equations

Within the immersed-boundary framework, the fluid motion is governed by the axisymmetric
Navier-Stokes equation as
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where u ≡ (ux, ur ) is the flow velocity. f ≡ ( fx, fr ) is the force exerted by the solid object on the
fluid, which is determined via its relation with F ≡ (Fx, Fr ), the force exerted by the fluid on the
solid object. We have

f (x, t ) =
∫

�

F(s, t )δ(X(s, t ) − x)ds, (2)

where x ≡ (x, r). � represents the contour where the membrane is located, and s is a Lagrangian
coordinate along this contour. X is the location of a point on the contour measured in the (x, r)
coordinate system.

To enforce the no-slip and no-flux conditions at the fluid-solid interface, we use a penalty method
in which neighboring fluidic and structural particles are connected with springs to keep them from
drifting away from each other. Subsequently, we have

F(s, t ) = α

∫ t

0
[U(s, τ ) − V(s, τ )]dτ + β[U(s, t ) − V(s, t )], (3)
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FIG. 4. The computational domain and boundary conditions.

where V is the structural velocity, and U is the fluid velocity at the fluid-structure interface
obtained as

U(s, t ) =
∫

	

u(x, t ) δ(x − X(s, t ))dx, (4)

where 	 is the fluid domain.
In Eq. (3), α and β are the stiffness and damping coefficient of the spring. If these numerical

parameters are sufficiently large, then their values have no effect on the results.
The net force on the body Fb is defined as the hydrodynamic force on the body in the −x direction,

which is obtained by integrating the fluid forcing Fx over the contour of the body so that

Fb = −
∫

�

2πr(s)Fx(s, t )ds. (5)

The power expenditure P is obtained as

P =
∫

�

2πrF · Uds. (6)

The forward motion (hereby the body displacement of the center of the mass in the −x direction)
xb is determined through Newton’s law as

mb
d2xb

dt2
= Fb, (7)

where mb is the mass of the swimming body.

B. Numerical method

The problem formulated in Sec. III A is solved numerically within a computational domain
shown in Fig. 4, where the boundary conditions for u and p are also provided. This computational
domain stems from the boundary-value problem shown in Fig. 3(b), in which the lower boundary
corresponds to the axis of symmetry. The length of the computational domain (in x direction) is
chosen to be 10L and its height (in r direction) is 3L. In free-swimming cases (Sec. IV C), to
prevent the swimmer from moving out of the computational domain a uniform incoming flow u0

is introduced (see Fig. 4). The value of u0 is determined through numerical tests. The effect of
this incoming flow is removed in post processing so that the results presented are measured in
a space-fixed coordinate system without background flow. In tethered swimming cases (see Sec.
IV B), the horizontal position of the swimmer is kept at the center of the domain and u0 is set to be
zero.

To discretize the partial differential equations, a finite-difference algorithm is developed, which
combines a second-order method for spatial discretization and the Crank-Nicholson method (also
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FIG. 5. Numerical rendition of the membrane circulation. The contour of the wall is shown in dashed line,
and the numerical grids on the membrane are shown as bullets.

second order in accuracy) for time integration. The computational domain is separated into two
regions, an inner region near the solid object where refined computational mesh is used for high
resolution, and an outer region with coarser computational mesh for high efficiency in computation
(Fig. 4). In the inner region the grid size is uniform; in the outer region the grid size increases
gradually with the distance to the inner region. The transition from the inner mesh to the outer one
is smooth. The details of this method can be found in previous publications [18–20].

Numerically, the circulation of the membrane is achieved in a manner illustrated in Fig. 5. In the
immersed-boundary approach, the solid structure (hereby the membrane that separates the interior
fluid from the exterior fluid) is represented by isolated grids embedded in the surrounding flow field.
During the simulation these grids move along the contour of the wall (i.e., in the s direction) with the
prescribed speed V . This brings the nearby fluid to move together according to the no-slip/no-flux
conditions enforced via Eq. (3). The interior flow does not affect the net force Fb on the body, as the
force it exerts on the membrane is an internal force. However, it does affect the power expenditure
P through energy dissipation.

The accuracy of the numerical solver used in this study has been demonstrated by using it to
simulate a canonical problem, the flow around a stationary sphere [19]. The results matched well
with benchmark data from the literature. Moreover, numerical sensitivity tests have been conducted
with various configurations [19,21].

An additional validation of the current model is carried out by examining the drag force caused by
flow around a fixed torus. As shown in Fig. 6, the torus has a major radius of D/2 and a minor radius
of d/2 so that its aspect ratio is D/d . The Reynolds number Re is defined by using the incoming
flow speed U and d . Numerically, the size of the computational mesh is �x = �r = 0.005d , the
time step is 1 × 10−4d/U , and the computational domain is 20d × 10d .

In Fig. 7 the drag coefficient CD (defined as FD/( 1
2πρDdU 2), where FD is the drag force on the

torus) at various Reynolds numbers when D/d = 2 is plotted. The predictions of our model are
compared with the numerical results reported by Sheard et al. [22]. It is seen that the two sets of
data agree perfectly with each other.

IV. RESULTS

To normalize the problem, We choose the fluid density ρ, the membrane circulation speed V , and
the body length L as repeating variables. Thus, in the following results the lengths are normalized
by L, the speeds by V , the time by V −1L, the masses by ρL3, the forces by ρL2V 2, the power by
ρL2V 3, and the vorticity by L−1V . For convenience, we do not change the symbols of the variables
defined earlier, although hereafter they are all dimensionless.

In the following simulations the body mass mb is chosen to be 0.005. This parameter does not
affect the steady-state performance of the system, although it does affect the route toward steady
state. The wall thickness d is fixed at 0.08. The physical parameters that can be changed are: (1) the
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FIG. 6. (a) Three-dimensional illustration of flow around a fixed ring. (b) Two-dimensional view of the
problem in a cross section. (c) Computational domain.

Reynolds number, which is changed by varying μ, and (2) the diameter of the body D. The range
of Re considered in this study is [10, 400]. Above this range, the axisymmetric assumption may be
invalid at larger Reynolds numbers. Below this range, the power expenditure increases dramatically
so that the efficiency decays.

A. Numerical sensitivity tests

To further examine the validity and accuracy of the numerical model in the current study, and to
choose the proper numerical parameters, additional sensitivity tests have been conducted. For this
purpose we study three different meshes, a coarse mesh with �x = �r = 0.0045 and Ns = 667, a

FIG. 7. Drag coefficient on a torus with an aspect ratio of D/d = 2 at different Reynolds numbers obtained
with the present method in comparison with the results reported by Sheard et al. [22].
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FIG. 8. Sensitivity of the time history of the swimming speed ub to (a) computational mesh and (b) time
step. Re = 40, D = 0.3.

medium one with �x = �r = 0.003 and Ns = 1000, and a fine one with �x = �r = 0.002 and
Ns = 1500. Here �x and �r are the sizes of the computational grid in x and r directions in the inner
region. Ns is the number of grids along the membrane. Two values of time step, �t = 5 × 10−5 and
�t = 10−4, are also tested. In Fig. 8, it is demonstrated that the numerical results (represented by
the time history of the swimming speed ub = ẋb) are not sensitive to these numerical parameters.

In addition, sensitivity to the size of the computational domain has been tested by using a domain
that is 1.5 times larger than the one described in Sec. III B in each side. The mesh size in the inner
region remains unchanged. It is shown that this change in the numerical setup has almost no effect
on the result. The figure is not displayed here as the two curves with the smaller and larger domains
are graphically indistinguishable from each other.

All the following simulations will be conducted with the medium mesh, a time step of 10−4, and
a computational domain specified in Sec. III B.

B. Tethered mode

In the tethered mode the forward motion xb is set to be zero. The purpose is to examine the force
generation capacity of the system at different conditions, i.e., different values of Re and D. Usually
the membrane has to circulate around for about two to five times before steady state is established.
Afterwards the net force Fb, the power expenditure P, and the near-body flow field are recorded.

The near-body flow field in the steady state for a typical case with Re = 200 and D = 0.3 is
shown in Fig. 9. According to Fig. 9(a), inside the chamber the longitudinal component of the flow
velocity ux is close to the speed of the inner-side membrane (i.e., −1), whereas the flow speed in
the outer side drops quickly as the distance to the outer surface increases. Meanwhile, the radial
velocity component ur is small except in the areas close to the leading and trailing edges of the wall.

In addition, contour of the vorticity component (∂ux/∂r − ∂ur/∂x) is plotted in Fig. 9(c). It is
seen that the magnitude of the vorticity inside the chamber is small, which is consistent with the fact
that the variation of the flow velocity in the chamber is small [see Figs. 9(a) and 9(b)]. However, near
the outer side of the wall there is an area with concentration of negative vorticity, indicating the shear
flow induced by the tangential speed of the wall due to the membrane circulation. The difference in
the strength of the vorticity fields near the inner side and the outer side of the wall implies that the
shear strengths, and subsequently the shear stresses, in these two regions are different.

Areas in a flow field with concentrated vorticity often coincides with the existence of vortices.
With our definition, concentration of positive vorticity corresponds to a clockwise vortex while
concentration of negative vorticity corresponds to a counterclockwise vortex. To check the existence
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FIG. 9. Near-body flow field around a tethered swimmer visualized through (a) contour of ux , (b) contour
of ur , (c) contour of vorticity, and (d) streamlines. Re = 200, D = 0.3.

of vortices in the flow field, in Fig. 9(d) the streamlines near the swimmer are plotted. This
figure suggests that the area with concentrated negative vorticity in Fig. 9(c) is not a vortex. Instead,
there does exist a counterclockwise vortex slightly downstream. However, this vortex appears to be
weak so that it is not detectable in the vorticity contour.

In the case shown in Fig. 9, the force Fo generated by the outer-side membrane (defined as the part
of the membrane whose r position is larger than D/2), is 0.2. Meanwhile, the inner-side membrane
(the part of the membrane whose r position is less than D/2) generates a negative force Fi = −0.141.
Similar to the net force Fb, the positive direction of both Fo and Fi is the swimming direction −x.
The difference between the magnitudes of Fo and Fi is attributed to the effect of the solid boundary.
The inner-side membrane is located within a semiclosed chamber, in which it interacts with the wall
on the opposite side of the chamber hydrodynamically, leading to a ground-effect-like phenomenon
[21]. The outer-side membrane, however, is located within a semiopen field. This difference leads to
the inner side versus outer-side asymmetry, which is essential for thrust generation. In this particular
case, the net force generation is Fb = Fo + Fi = 0.059. The power expenditure P is 0.398.

The flow fields, visualized through streamlines, at various values of the Reynolds number Re and
body diameter D are shown in Fig. 10. Two values of Re (10 and 200) and three values of D (0.3,
0.4, and 0.5) are included. These figures suggest that except for some local circulatory motions (e.g.,
the motion around the wall and the vortex downstream), the induced flow field is predominantly
in the +x direction. This kind of flow is expected to be associated with a net force on the
body in the −x direction. The Reynolds number has pronounced effect on the flow field—according
to the streamline plots in all values of D the downstream vortex disappears when Re is reduced from
200 to 10. As D increases, the region surrounding the wall within which the fluid circulates around
it is enlarged.

For a clearer comparison among cases with different values of Re and D, in Fig. 11 we plot pro-
files of the longitudinal velocity component ux at a cross section downstream. These figures prove
that with larger D the flow region affected by the motion of the wall increases in size. Besides,
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FIG. 10. Near-body flow field visualized through streamlines at Re = 10, 200 and D = 0.3, 0.4, and 0.5.

the area of the affected region is also larger for cases with low Reynolds number, a phenomenon
attributed to the increased shear stress with higher viscosity.

Corresponding to the enlargement of the affected area in the flow field, lower Reynolds number
also leads to the generation of larger net force, as demonstrated in Fig. 12(a). However, this en-
hancement of Fb is achieved at the cost of more energy spent to circulate the membrane [Fig. 12(b)].

The effect of diameter D on force generation is more complicated. On the one hand, larger
D leads to more surface area of the membrane so that both Fo and Fi are increased. This effect
tends to increase Fb. On the other hand, with larger D the effect of the solid boundary in the
chamber is reduced so that the inner side versus outer-side asymmetry of the membrane is weakened.
Subsequently the magnitudes of Fo and Fi are closer to each other. This effect tends to reduce Fb.
The exact effect of D on Fb is therefore case dependent. In the lower Reynolds number regime
(Re <∼ 50) the first effect triumphs over the second effect so that higher Fb is achieved at higher
D. Beyond this Reynolds number regime the opposite trend is observed [see Fig. 12(a)]. In terms
of the power expenditure, the trend is much simpler: larger D always increases P within the whole
range of Re we consider [Fig. 12(b)].

C. Free-swimming mode

In the free-swimming scenario the swimmer starts from rest (u0 = 0), where the outer-side mem-
brane generates positive force with respect to the swimming direction (Fo > 0) and the inner-side
membrane generates negative force (Fi < 0). Propelled by the net force Fo + Fi, it accelerates toward

FIG. 11. Profiles of ux at two values of Re (10 and 200) and (a) D = 0.3, (b) D = 0.4, and (c) D = 0.5.
The measurements are conducted at a distance of 0.1 downstream of the trailing edge of the swimmer.
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FIG. 12. (a) Net force Fb and (b) power expenditure P in steady state at different values of Re and D in the
tethered mode.

the −x direction. As the forward speed ub increases, the magnitude of Fo is reduced following the
diminished relative motion between the outer-side membrane and the background flow. Meanwhile,
the magnitude of Fi is increased since the relative motion between the inner-side membrane and the
background flow is enhanced. The acceleration phase stops at the state when Fo = −Fi. Afterwards
the swimmer travels at its steady-state swimming speed ubs.

The dependencies of Fo and Fi upon ub at two different Reynolds numbers are plotted in Fig. 13.
Interestingly, despite the large differences in the exact values of Fo and Fi in these two cases, the
steady-state swimming speeds are close to each other.

An intuitive explanation for the insensitivity of ub to Re is provided in the following. By invoking
the Blasius solution, the shear force exerted by a flow on the surface of a flat plate aligned with it
is approximated as αU 3/2μ1/2, where U is the relative speed between the flow and the plate and α

depends on the density of the fluid and the surface area of the plate. If we assume that this relation
can be roughly applied to the surfaces of the swimmer with some adjustments to the coefficient α to
account for surface curvature and boundary effects, then the shear force exerted by the exterior flow
on the outer surface of the swimmer (the surface where the outer-side membrane lies on) could be
αo(V − ub)3/2μ1/2 and the one on the inner surface (the surface where the inner-side membrane lies
on) could be αi(V + ub)3/2μ1/2. The steady state is reached when these two forces are balanced so
that we have

ubs

V
= 1 − (

αi
αo

)2/3

1 + (
αi
αo

)2/3 . (8)

It is seen that when V and the fluid density are fixed, ubs does not depend on the viscosity μ.
However, in our formulation the variation of the Reynolds number Re is achieved by varying μ.
This explains why the dependence of ubs upon Re is weak.

Incidentally, within certain range of Reynolds number, it might be possible to quantitatively solve
this problem by using the analytical solution for axisymmetric boundary layers [23]. However, if
the Reynolds number is too low, then the boundary layer approximation is not accurate. If it is too
high, then the flow will not be axisymmetric anymore.

Systematic simulations have been conducted to document the performance of the system during
free swimming characterized by the steady-state swimming speed ubs, the steady-state power
expenditure Ps, and the cost of transport Cot ≡ Ps/ubs.
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FIG. 13. Dependencies of the force generated by the outer-side membrane (Fo) and the one by the inner-side
membrane (Fi) at different values of forward speed ub with (a) Re = 10 and (b) Re = 200. D = 0.3.

Figure 14 demonstrates the performance of the swimmer at various combinations of Re and D. It
is seen that within its range considered in this study, the effect of Re on ub is rather small, which is
consistent with the trend shown in Fig. 13. However, it does affect P—smaller Re leads to higher P
and subsequently higher CoT. However, as D is increased, ub is reduced while P is increased. The
combined effect is a pronounced increase of Cot with higher D within the whole range of Re we
consider.

Specifically, when D is 0.3, the swimming speed reaches 80% of the membrane circulation speed
(in comparison, the maximum swimming speed of a toroidal swimmer is between 60% and 70% of
the circulation speed [13,15]). When D is increased to 0.4, the speed drops to 70% of the circulation
speed. In terms of CoT, the best performance with the range of parameters is achieved at D = 0.3
and Re = 400, where the values of CoT is around 0.21. Unfortunately, the energy expenditure of
a toroidal swimmer at finite Reynolds numbers has not been reported so that it is not possible to
compare the efficiencies of the two designs.

For a representative case, the near-body flow fields recorded in a body-fixed reference system are
displayed in Fig. 15. Compared with the case shown in Fig. 9 (note that these two cases share the
same Re and D), there are a few differences:

(1) Outside of the barrel, there is a nonzero flow speed ux away from the body in the longitudinal
direction caused by the leftward motion of the swimmer [Fig. 15(a)]. However, inside the chamber
there is little change in ux.

(2) The vorticity strength above the outer-side membrane is greatly reduced [Fig. 15(c)]. This is
attributed to the fact that the relative speed between the outer-side membrane and the flow near it is
reduced.
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FIG. 14. (a) Swimming speed ubs, (b) power expenditure Ps, and (c) CoT in steady state at different values
of Re and D in the free-swimming mode. The swimming direction is −x (see Fig. 3).

(3) According to the streamlines, there is no vortex downstream [Fig. 15(d)]. This again can be
explained by the reduced relative motion between the outer-side membrane and the flow near it so
that the vorticity shed from the membrane into the wake is mitigated.

V. CONCLUSIONS

By using a numerical model based on the immersed-boundary method, we have computationally
investigated the feasibility and potential performance of a swimmer relying on tank-treading motion
of its membrane for thrust generation in the Reynolds number range of O(10 − 102). The basic
design includes a barrel-shaped body with both the front and the back ends open. Its side wall
is made of a membrane with fluid inside. Both tethered and free-swimming modes have been
examined.

In the tethered mode, our simulations indicate that positive net force (with respect to the
swimming direction) is generated when the inner-side membrane travels upstream to create negative
force while the outer-side membrane travels downstream to create positive force. During this process
positive net force is achieved since the outer side of the membrane generates more force. This net
force decreases when the Reynolds number is increased. The dependence on the body diameter D
is more complicated. At lower Reynolds numbers, this force increases with larger D. However, at
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FIG. 15. Near-body flow field around a free-swimming swimmer visualized through (a) contour of ux ,
(b) contour of ur , (c) contour of vorticity, and (d) streamlines. Re = 200, D = 0.3. The flow field is recorded
in a body-fixed coordinate system.

higher Reynolds numbers the trend is reversed. The power expenditure to activate the membrane
decreases with Re, but it increases with D.

In the free-swimming mode, it is found that the forward speed at steady state drops when D is
increased. It is, however, not sensitive to the Reynolds number. Consequently, the cost of transport
is reduced at higher values of Re, suggesting that the swimmer works more efficiently in higher
Reynolds number regime. Unfortunately due to the limitation of the numerical model it is not
possible to go beyond the upper range of the Reynolds number (400) considered in this study. Future
investigation in that study may be interesting. Besides, optimization studies about the geometric
design of the system for better swimming speed or efficiency will be an interesting direction to
go. Moreover, similar to the toroidal swimmer [16], the swimming direction of our design may be
reversed at certain regions in the parametric space due to the jet-driven effect. More simulations are
needed to explore this possibility.

As the current model is only capable of simulating objects with no thickness, we have focused
on a design in which the wall of the swimmer is made of fluid enwraped within a thin and flexible
membrane. The interior fluid has the same physical properties as the exterior fluid. In reality,
there could be detailed structure within the wall that is not taken into account in our model. This
simplification does not affect the net force on the body, as the force exerted on the membrane by
the interior structure or fluid is a internal force. However, it may affect the energy expenditure of
the system as it takes energy to drive the internal fluid (in an actual design there may not be interior
fluid) so that both the power expenditure and the cost of transport may be over estimated. In future
studies more sophisticated models are needed for more accurate investigation of the energetics.

In a more general sense, the swimming mode of microorganisms using synchronized motion
of cilia bears certain similarity to the tank-treading-driven locomotion method. In fact, these
swimming processes are often modeled as distributed surface velocities associated with ciliary
motion (squirming) [24]. This swimming method, although more complicated than the tank-treading
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one, provides more freedom in surface velocity distribution so that it might be able to deliver higher
performance.

Finally, we point out that if the axisymmetric swimmer proposed in this study is not easy to be
manufactured with the existing technology, then simplified versions with similar underlying physics
might be useful for a pilot study. For example, a pair of parallel circular cylinders that rotate in
opposite directions share the same mechanism of force generation as the toroidal swimmer [17].
Experimental studies of this simple device in thrust generation might be an interesting topic.
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